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How the orthophoto is built

An orthophoto is an image that corresponds to a photograph taken at infinite distance
above the Earth surface. This definition is valid for small areas, such as a small
city. For greater areas the curvature of the Earth surface would be apparent —or at
least measurable— and that is not what we understand as an orthophoto; that is, an
orthophoto is not an orthogonal projection of a piece of the Earth surface.

Actually, the position of the points in an orthophoto is that corresponding to some
cartographic projection. So an orthophoto has a projection, as maps do.

In order to start building an orthophoto two pieces of information have to be known:
i) the orientation of the image and ii) the position in space of the points appearing in
the image, i.e., the Digital Terrain Model (DTM).

There are in principle two approaches for creating the orthophoto out of a given
image. One of them consists in deforming the image so as to place each pixel in its
position according to the projection:

fig. 1

The severe drawback of this solution is that we do not get a rectangular matrix
of pixels, but instead a complicate pattern depending on the original tilt of the pho-
tograph and the formulas of the projection. Indeed, this pattern becomes completely
irregular due to the relief of the ground. This makes the orthophoto very difficult
to display on a screen and very difficult to handle by exploiting software as well as
printing devices. Therefore the solution actually used is always the other one.

fig. 2
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This second approach consists in finding the radiometric value that corresponds to
the points of a square matrix in the projection; that is, of asking “what value do we
have to assign to each point of the orthophoto?” (fig. 2).

This is solved point by point in the following way: Given the point with coordi-
nates (E, N) of the orthophoto, whose radiometric value we want to find, we go back
the projection to the space (the Earth) and therefrom to the image:

fig. 3
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and pick the radiometric value of the point we have got to in the image.
It first has to be defined the size of the orthophoto pixels. It should be selected so

as to match as closely as possible the image pixel.

Example: The mean photo height above the ground is 3 000 m, the focal length
equals 152 mm and the pixel size is 10 µm. The ground pixel size that better fits the
image pixel is then

0.01
3000

152
≈ 0.20 m

The problem arises that we will not in general fall exactly at the center of a pixel
when going from the point (E, N) to the corresponding point (x, y) in the image (we
will later call (x′, y′) the points in the image, but for the time being let them be
(x, y)). There are several ways of taking a value depending on the coordinates (x, y).
this process is called resampling.

Resampling techniques

In order to get a correct understanding of the resampling process, the image pix-
els should not be thought of as points, but as squares. They are cells that tile the
(x, y) plane of the image. The value of a pixel (for images this is a radiometric value)
is thought when resampling as being achieved at the center of the pixel. To word it
mathematically, the image is a function whose values are known at certain concrete
points, the pixel centers, and elsewhere have to be guessed (interpolated) from the
values at the known points.
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Let the centers of the image pixels have integer coordinates, varying one unit per
pixel. So a pixel is, for instance, the square [149.5, 150.5] × [223.5, 224.5], with center
(150, 224). For a given point (E, N) the corresponding (x, y) image coordinates would
have been found and these are not in general integer values. The problem is to assign
a value to the point (x, y) as a function of the surrounding pixel centers.

The easiest solution is to get the value of the nearest pixel center. This method is
called nearest neighbor.

Example: Let the following matrix be a subset of an image.

220 221 222 223

1034 83 84 88 90

1033 83 83 85 88

1032 82 83 84 86

1031 81 82 83 84

and let us suppose that we have found the point (221.3, 1032.6) to be the one cor-
responding to (E, N) = (100 025, 80 650). The nearest pixel center is (221, 1033), so
we assign its value —i.e., 83— to the point (221.3, 1032.6) and hence to the point
(100 025, 80 650) of the orthophoto.

Note that the usual growing sense of the rows has been reversed. This is done so
that the (x, y) coordinate system is oriented as the (E, N) coordinate system of the
orthophoto.

The next method, ascending in complexity, is to perform a linear interpolation
inside the square where the point (x, y) lies whose coordinates are pixel centers:

fig. 4
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fig. 5

In fig. 4 the four dots are pixel centers; the cross point of the horizontal and vertical
continuous lines is the (x, y) point which value we want, and the dashed lines are pixel
boundaries. Let v00, v01, v10 and v11 be the values of the image at the pixel centers,
as shown in the figure, and let (s, t) be the fractional parts of the coordinates (x, y).

The linear interpolation can be visualized as in fig. 5. Four vertical segments have
been drawn at the pixel centers (the corners of the square) equal in length to the values
of the image at those points. The top points of the segments have been joined in the
same order as their bottom points are, forming a spatial quadrilateral. Opposite sides
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in this quadrilateral are divided into equal ratios and the corresponding points joined.
The result is a ruled, non developable surface —a hyperbolic paraboloid.

The numerical calculation is no more than a translation into algebra of this geo-
metric construction. We first interpolate within the horizontal sides of the square:

vx0 = (1 − s)v00 + sv10,

vx1 = (1 − s)v01 + sv11,

and next within the vertical line:

vxy = (1 − t)vx0 + tvx1.

Carrying out the operations we get to

vxy = (1 − s)(1 − t)v00 + s(1 − t)v10 + (1 − s)tv01 + stv11.

This is an average of the four values where each value’s weight is the product of the
two opposite segments to it in fig. 4.

This method is called bilinear interpolation.

Example: With the same numbers as in the previous example, compute the in-
terpolated value by bilinear interpolation.

The values are

(x, y) = (221.3, 1032.6) ⇒ (s, t) = (0.3, 0.6),

v01 = 83 v11 = 85

v00 = 83 v10 = 84

The solution is

vxy = 0.7 0.4 v00 + 0.3 0.4 v10 + 0.7 0.6 v01 + 0.3 0.6 v11

= 0.28 ·83 + 0.12 ·84 + 0.42 ·83 + 0.18 ·85 = 83.48

This interpolation is of course better than the nearest neighbor (which does not
interpolate at all), but it fuzzes the edges as a consequence of the averaging. In order
to avoid this effect another method is devised which takes into account more pixels.
Consider for instance the next three examples.

fig. 6

A B C

x x x

4



The dots represent again pixel centers. In order to simplify the example only one
coordinate was considered. Let us suppose that the four pixels are at positions x = 0,
1, 2 and 3, and we want to interpolate the value at x = 1.5. In the three examples the
pixels 1 and 2 have the same values, and therefore the linear interpolation would yield
the same result. However, if we consider the four points and draw a smooth curve
through them we see than in case A the middle third is higher than in case B and this
in turn is higher than in C.

This example illustrates the fact that the higher the outer pixels the lower the
interpolated value. So if the this value is to be computed as a weighted mean (and it
will be), outer pixels should have negative weight.

This is accomplished by the bicubic convolution. There are other alternatives,
but under a certain theoretical criterion this one is the best possible one.

fig. 7
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There are a total of sixteen points involved in the interpolation (fig. 7). Let their
values be denoted through v00 for the one at the lower left corner to v33 at the top
right, and let s and t be as before.

The value according to this method is

vxy =
∑

puqv vuv.

That is, a weighted average where the weight of each pixel is obtained as the product
of two factors, one corresponding to the column and other to the row. This was also
the case for the bilinear interpolation.

The components pu of the weights are functions of s:

p0 = −as(1 − s)2, p1 = 1 − (3 − a)s2 + (2 − a)s3

p3 = −a(1 − s)s2, p2 = 1 − (3 − a)(1 − s)2 + (2 − a)(1 − s)3.

And analogous formulas hold for qv as functions of t.
The quantity a is a parameter of the method. In contrast to the preceding ones,

the cubic convolution is not a single interpolation but a uniparametric family of inter-
polations, depending on one parameter. The choice a = 0.5 is usually a good one. For
this value we have

p0 = −1

2
s(1 − s)2, p1 = 1 − 2.5s2 + 1.5s3

p3 = −1

2
(1 − s)s2, p2 = 1 − 2.5(1 − s)2 + 1.5(1 − s)3.
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For example, v31 has the weight

p3q1 = −1

2
(1 − s)s2 (1 − 2.5t2 + 1.5t3).

The whole summation can be written in matrix form:

(
q3 q2 q1 q0

)







v03 v13 v23 v33

v02 v12 v22 v32

v02 v10 v21 v31

v00 v10 v20 v30













p0

p1

p2

p3







Example: Continuing with the same data, compute the interpolated value by
bicubic convolution.

The values of pu and qv are

p0 = −1

2
0.3 0.72 = −0.0735 q0 = −1

2
0.6 0.42 = −0.048

p1 = 1 − 2.5 0.32 + 1.5 0.33 = 0.8155 q1 = 1 − 2.5 0.62 + 1.5 0.63 = 0.424

p2 = 1 − 2.5 0.72 + 1.5 0.73 = 0.2895 q2 = 1 − 2.5 0.42 + 1.5 0.43 = 0.696

p3 = −1

2
0.7 0.32 = −0.0315 q3 = −1

2
0.4 0.62 = −0.072

We can check that
∑

pu = 1 and
∑

qv = 1 is satisfied.
There “only” remains to carry out the products and sums:

vxy =
∑

puqv vuv = (−0.0735)(−0.048)81 + 0.8155(−0.048)82 + · · ·

= 0.00353 ·81− 0.03914 ·82− 0.01390 ·83 + 0.00151 ·84 + · · · + 0.00227 ·90

= 83.29

The nearest neighbor technique, despite being very coarse, has the property of
retaining the original values, which may be necessary for some applications, although
it is unlikely.

Coordinate transformation

From (E,N,H) to (X,Y,Z)

In order to find the value at a point (E, N) of the orthophoto we first get the H of that
point in the DTM, and then we have to follow the path

(E, N, H) −→ (X, Y, Z) −→ (x, y)

The transformation from (E, N, H) to (X, Y, Z) takes into account the curvature of
the Earth surface and the deformation of the projection. For satellite images the H
may some times be ignored.

Let (EO, NO) be the (E, N) coordinates of the image projection center (fig. 8), and
let k be the scale factor of the projection at the point (EO, NO). We will place the
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fig. 8
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origin of the (X, Y, Z) system at the point (EO, NO, 0). We are supposing a conformal
projection. If it were not, a more complicated transformation would take place.

If a point have (E, N) coordinates, the actual distance along the (E, N) axes from
that point to the point (EO, NO) is

∆E

k
and

∆N

k
,

where ∆E = E−EO and ∆N = N−NO. The axes run along the surface of the ellipsoid.
The difference between distances along the Earth surface and inside the tangent

plane is a third order component and therefore negligible (even for some kilometers).
Let h = H + N —therfore, h is the ellipsodal height. It can be shown (see the paper
“Systèmes de référence”) that, neglecting third order components,

∆E′ =
E − E0

k
, ∆N′ =

N − N0

k
, S2 = ∆E′2 + ∆N′2,

X =
R + h

R
∆E′, Y =

R + h

R
∆N′, Z = H −

S2

2R
.

The coordinates of the projection center in the (X, Y, Z) system are (0, 0, ZO), where
ZO = HO.

Example: Let an orthophoto be expressed in the GRS80 ellipsoid with UTM
projection. The coordinates of an orthophoto pixel are

(720 550, 4 703 100);

the H for that point according to the DTM is 680.6; the value of N at that point is 50,
and the projection center coordinates are

(724 030.23, 4 702 668.03, 6 320.44)

All the values are given in meters. Find (X, Y, Z) for the point.
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The scale factor for the UTM projection at the projection center coordinates is
found to be

k = 1.0002176.

We will use R = 6 378 000 m (adequate for these latitudes). We successively find:

∆E = −3480.23, ∆N = 431.97, h = 730.6

1

k

R + h

R
= .9997825 ·1.0001146 = 0.9998970

X = −3480.23 ·0.9998979 = −3479.87, Y = 431.97 ·0.9998970 = 431.93,

Z = 680.6 −
12293000

12756000
= 679.64

From (X,Y,Z) to (x
′,y′)

The (x, y) coordinates are related to (X, Y, Z) by the colinearity equations. With the
usual notation, and noting that XO = 0 and YO = 0,

x = −f
m11X + m12Y − m13(Z − ZO)

m31X + m32Y − m33(Z − ZO)
,

y = −f
m21X + m22Y − m23(Z − ZO)

m31X + m32Y − m33(Z − ZO)
.

The image may have a geometric distortion. One may think that a good solution
is to correct the images from distortion, so we forget about distortion once and for all.
However this implies a resampling of the image. As a general rule,

The least the images are modified the better. Geometric transformation are

better handled by software than by actually reshaping the photographs or me-

chanical devices.

This applies not only to orthophoto generation but to the whole process of pho-
togrammetric production and, indeed, to anything that requires precise measurements,
like theodolites. Therefore, photogrammetric software must always take into account
the distortion of the image when getting to it, or going form it to elsewhere.

So in order to get to the image coordinates where the point (X, Y, Z) actually
appears, the distortion needs to be added, as well as the principal point coordinates if
they are not zero:

(x′, y′) = (x, y) + D(x, y) + (xc

p
, yc

p
)

Orthophoto tile

The most common situation when generating orthophotos is that a large orthophoto
is composed from a set of photographs forming a block.
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In its first step the orthophoto is generated in the same way as in the previous
case —a pixel by pixel generation is performed. But now every point appears in at
least two photographs and possibly in more, so a decision as to be made on which
photograph to fetch the value from, or either to make some kind of average.

The averaging is discouraged because the different image points computed for a
(E, N, H) point may not correspond exactly to the same ground detail. It should, but
residuals always remain, and such an averaging would lead to blur edges.

The averaging being discarded, it is required to define a criterion for the choice of
the photograph. Among all the photographs where the point appears, that which is
closer to the vertical of the point will approximate better the orthogonal view. This
leads to the criterion of maximum verticality.

A similar criterion is to select the photograph whose projection center is closer,
in (E, N) coordinates, to the point. This is very similar to the previous criterion, the
borders varying just a one or two pixels (ore none at all), and has the advantage that
the photograph corresponding to each (E, N) of the orthophoto is independent of the
H coordinate.

The appropriateness of verticality is also reflected in the flight itself. Flights for
orthophoto generation have greater overlap among adjacent photographs, in order that
for every ground point there is some photograph where it appears near the center. A
typical overlap is 80%.

Two kind of problems appear at the borders. One is geometric, the other radiomet-
ric. The first one are small shifts that may appear at the border, specially noticeable
at roads, dams, etc. However, if the orientations of the photographs are computed
properly, the effect should be very little. The other is the difference in luminosity or
color of the two photographs.

Both problems can be solved by manually drawing the choice borderlines, making
them coincident with natural breaklines of the ground. The radiometric problem,
however, is only diminished, and it may still be very noticeable. It is for this that
radiometric adjustments are required.

Radiometric adjustments

Two kind of radiometric adjustments are performed on the photographs. One is a
constant per photo adjustment: darker photos are brightened and brighter ones are
darkened; reddish ones are blued and bluish ones are red, etc.

In order for the computer program to detect the adjustments to be applied to each
photograph it cannot just base its decisions on the average values of the photograph.
There can be photographs that are darker just because they actually picture a darker
area. For example, photos with large portion of water will be much darker than the
others. Instead, the overlapping areas have to be compared.

This global adjustments may not be sufficient, specially if the camera objective has
a systematic difference in luminosity from one area to another.

Fig. 9 pictures at the left a schematic graph of the luminosity along an edge per-
pendicular to a choice borderline. The picture in the right is brighter that that in
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fig. 9
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the left. A stream surrounding the borderline is selected and the radiometry of both
images is modified so that they match at the choice border. the result is displayed at
the right.

These adjustments can get more complex if the software implements better algo-
rithms, but the idea remains the same.

The radiometric adjustment opens the possibility of integrating photos from dif-
ferent flights in the generation of a single orthophoto. This is specially useful for vast
areas, where it may be very difficult that all the area be uncloudy simultaneously, or
for high latitudes and ragged terrain, where the sun is a very short time high enough
so as not to cast shadows.

Automatic generation of the DTM and

the orthophoto

Once the orientation of the photographs is known, the DTM has been generated,
the pixel size of the orthophoto defined and, if the user wants, manual choice border-
lines have been drawn, the automatic generation of the orthophoto can proceed. The
most complex parts are the organizing of the photographs, so as to create the (E, N)
tile defining where each orthophoto pixel will be taken from, and the radiometric
adjustments. The result is usually very good.

More difficult is the automatic generation of the DTM. It is carried out by corre-
lation among images, making use of the parallax principle. But many difficulties arise
in the process.

• Huge amount of data. This implies two problems. The volume of data itself and
long processing times. The former is no longer a problem, given the ever more massive
and cheaper storing devices. But the later is still of importance, and it is likely to
continue being like that for a long time.

It is solved by and efficient data management (by the program that computes the
DTM) and by good algorithms for correlation. For instance, the parallax of a given
point is usually similar to that of the preceding one.

It is also important to choose the adequate grid size. Not all points can be corre-
lated, and a too high density would increase very much the size of data and processing

10



times while not improving the model. Indeed, it may worsen it, since small irregular-
ities will appear more often.

• Break lines. The earth surface has lines along which the slope of the ground
undergoes a clear change. The most prominent of these are rocky edges, rivers and
wadis. While the software may try to detect them, it is extremely difficult and, anyway,
it would need careful checking by the user, so in practice little is gained with respect
to drawing them.

It is very important a conscious drawing of break lines, for a big part of the dif-
ference between a low-quality model and a good one is a correct drawing of brake
lines.

• Trees and buildings. This is the crux of automatic DTM generation.

fig. 10

?

As fig. 10 shows, these accidents cause wrong points in the DTM. Thus, the model
has to be manually edited after its generation and the process is not completely auto-
matic.

Figure 10 exhibits two typical effects. One is the obvious prominences. The other is
that vertical surfaces make some points hidden in some photographs, and the correlator
will fail to correlate or will reach an incorrect result.

Some programs analyze the radiometry of the surroundings of the point to be
correlated in order to detect trees or patterns similar to others selected by the user
beforehand (training of the correlator), and if necessary displacing the point of corre-
lation. This works for isolated elements, but not in a forest or in a city.

Let’s start with the forest. With visible light it is impossible to see beyond the top
of the trees, so it is these tops that have to be correlated. Afterwards (or before), the
user may draw the limit of the forest, and by comparison with the adjacent ground
the height of the trees is guessed, or it may be supplied by the user, and the whole
area of the forest is lowered that height. This is more often than not the best that can
be done.

With respect to the buildings, in a town or a city, it has first to be decided what
we want: the actual frontier of the “solid” earth and the atmosphere, including the
buildings and possibly the trees, or the street ground level. In the later case, the city
may be delimited as was done for the forest, and the correlator may try to detect high
and low points, and use only the low ones for the model.

In the other case, a good solution can be achieved diminishing the grid side within
the city. This requires software capable of handling variable grid-size DTMs. If the city
occupies a significant portion of the image, the grid size need be small in a large area,
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and the data increases. There is however no other solution if we want the buildings to
be represented properly.

Apart from other protruding buildings, such as chimneys, electric towers and oth-
ers, there is the problem of bridges. Again, we have to decide whether we want the
lower level or the higher one.

All these elements may raise as well the opposite problem. This happens when
we want every element to appear. For example, when creating DTMs for aircraft
navigation. In this case we even want the electric wires to appear, which will surely
not be detected properly by the program. Indeed, wires is precisely what we would
want most not to be missing. Consider for instance those crossing catenaries that fly
more than one hundred meters above the bottom of the valley.

• Moving elements. When generating the DTM, the heights are computed based
on parallax measurements. Moving elements change their position from one photo-
graph to the next, hence appearing to have a greater or smaller parallax than the one
corresponding to their height. If they happen to move along the flight direction, they
may be correlated and generate a raised or sunk point.

In case they do not move along the flight direction, or even if they do, they may
interfere the correlation of other points. In particular, a car top may be correlated
with a flat building top or other similar features.

Also the trees leaves and branches move and change shape because of the wind.
While not being significant for isolated trees —it does not solve the problem of trees,
of course, but it does not worsen it either—, it can make the correlation inside forests
very difficult, specially if the trees are dark. Given that in a forest the correlation
is not precise anyway, a good solution is to enlarge the set of pixels being correlated
—i.e., to use a 25 × 5 line instead of a 5 × 3 one, for instance, and/or not to use
single pixels but groups of four pixels as if they were single pixels (this can be easily
accomplished if the images are stored in a pyramidal structure).

• Integrating the restitution and cartography in the DTM. We have to distinguish
here data coming from the same block of photographs used for the generation of the
DTM and data from previous works or existing maps. In both cases the data is
essentially a source of break lines, and it can improve the details of the DTM and at
the same time saving time in the step of control and manual editing.

There is a very particular kind of data that deserves special treatment. It is contour
lines. Most contour points are just points with known height, at no special location.
However, the shape of the contours may be used to infer break lines. Many small
watercourses, most of them usually without water, can be detected by analyzing the
angles at a contour and with respect to the adjacent contours.

It is also possible to compare the contours arising from the DTM with the existing
ones. They will not coincide because contours are not systematically used as break
lines. Indeed, if we did so then there would be no need to correlate at all, and contours
themselves, together with other break lines, would define the model. When we are
providing contour lines to the DTM generation program they belong to other works
or existing cartography, since we are generating the DTM precisely because we don’t
have it yet.
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The integration of data coming from sources other than our block is more difficult
because the coordinates of features in the source and in our work may not match
exactly. The better the quality of both works the better the matching. This is the
source of many problems for the generating software, that should analyze the supplied
data and try to make it correspond with ours. There should be special care about
differences in height, lest we get sunk roads or raised lakes or other incorrect results.

Integration of the orthophoto in the DTM

Once the orthophoto is generated in digital format, it may be printed or it may
be further exploited. One possibility is the integration with the DTM. This can be
used to create artistic perspectives as well as for some useful applications. We may,
for example, include projected elements that do not yet exist on the ground, such as
roads, pits, . . . and make use of it in analysis of landscape impact or visibility studies
(fig 11).

This integration also offers the possibility of creating animated trips along or above
the Earth surface.

The underlying principle is that we should no longer think about the products
as isolated results: maps, orthophotos, . . . Nowadays, the digital storing of all the
information allows its reuse and combination whenever it is needed and in any fashion
permitted by the software and the ability of the cartographer.

fig. 11
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