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INTRODUCTION 

THE idea of the forthcoming work stems from an article by K. Jacobsen: 

Block Adjustment. There the drawbacks of the traditional odd polynomial for the 

radial symmetric distortion are briefly depicted and a better model is provided, 

though it is not explained because the object of the paper is a different one. The 

parameters are however easy to interpret, and an analysis of them lead me to 

prefer a somewhat different set. I first developed the model for my diploma thesis 

back in 2005. Since that time the model has been subject to one important 

rectification and some minor improvements, and above all the opportunity for 

substantial testing and hence drawing conclusions arose two years ago, and here 

are the results presented. 

The principle upon which the model was to be developed was the 

orthogonality among its components. The derivation of the orthogonal base was 

not so straightforward as it first appeared to be. Some distortion components are 

tightly bound to some orientation parameters. Once the different interdependen-

cies are understood a polynomial base for the symmetric components arises 

naturally from its first, mandatory, components. The asymmetric components are 

thence derived in a natural way too. 

The actual square or rectangular shape of photographs has to be taken into 

account for orthogonality —i.e. orthogonality is to be sought for a photograph-

shaped domain. 

THE MATHEMATICAL SETTING 

The geometry 

The taking of an image is idealised as a central projection. Such a projection 

is defined by the position in space, relative to the object being projected, of the 

projection centre O and the projection plane π, which account for six parameters. 

There is a distinguished point in the projection plane, viz. the point where the 

perpendicular, let fall from the point O onto the plane π, meets the plane π. It is 

called the principal point and will be denoted by the letter p. 

If we further want plane coordinates to be assigned to the image points a 

coordinate system has to be placed onto the plane, adding three parameters and 



2  

making a total of nine. The equations relating object coordinates to image 

coordinates are the well known collinearity equations.  

I shall denote object points with capital Latin letters: A, B, C, etc., and image 

points with lower case ones: a, b, c, etc. I shall similarly denote coordinates in the 

object system by (X,Y,Z), thus (X,Y,Z)A, XA, etc., and real image coordinates by 

(x′, y′). The image not being perfect, these coordinates do not correspond to any 

central projection. 

The easiest definition of the 6 + 3 projection parameters is as follows: For the 

first six, the coordinates (X,Y,Z)O of the projection centre; the distance f from the 

centre O to the projection plane π, where f stands for focal length, but it should be 

better called projection distance; and two other parameters, Ω and Φ, defining the 

orientation of the plane with respect to the object coordinate system. There is no 

easiest definition for these two parameters, and their geometrical meaning, if any, 

may be varied to better fit actual needs (in particular, to avoid singularities). 

For the last three parameters there can be taken an angle κ defining the 

orientation of the image axes, to be measured from an origin the definition of 

which may be indirect, and the coordinates (xp, yp) in the image system of the 

principal point. 

These parameters define the projection and hence, for any object point A, its 

theoretic image coordinates (x, y)a, and for the entire space the whole theoretic 

image, where this should be thought as the whole set of (x, y) coordinates. The real 

image coordinates of the point a will be some different ones (x′, y′)a, and the 

difference of these with respect to (x, y)a is the value of the distortion at the 

point a. In the like manner, the difference of the whole set (x′, y′) with respect to 

(x, y) is the distortion function. When I refer to the image, without any qualifier, I 

shall mean the real image. 

The previous description divides the parameters according to their geometric 

nature: 

XO, YO, ZO, Ω, Φ, f       κ, xp, yp, 
 

since from the geometric viewpoint the last three just don't exist. Here κ does 

mean a rotation on the x, y plane, while Ω and Φ are just symbolic names for two 

parameters defining the orientation of the plane π. I write a lower case κ to 

emphasize that its effect is a movement on the photograph, like xp and yp, in 

contrast with Ω and Φ that change the geometry of the image. 

It is more common a classification according as to whether the parameters 

vary from one photograph to another or on the contrary remain fixed. These two 

sets are called exterior and interior parameters respectively: 
 

XO, YO, ZO, Ω, Φ, K,           f, xp, yp. 
 

When developing a distortion model both these partitions are of little interest. 

The relevant division of the nine parameters together with the distortion function 

is as follows: 

XO, YO, ZO, 
 

Ω, Φ, xp, yp, κ, f, and the associated distortion components 
 

The remaining distortion components. 
 

This will be made apparent in the next sections. 
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The orientation plus distortion decomposition: the non-uniqueness problem 

When calibrating an image there exists a set of (X,Y,Z) object coordinates, 

and there is also the set of corresponding (x′, y′) image coordinates. It is required to 

decompose the transformation from (X,Y,Z) to (x′, y′) in the form D◦T, where T is a 

central projection and D a distortion, that is, 
 

 

 

 

 

 

The function D is very near unity, and it is therefore that its difference from 

unity, which we shall call , is more often used. This agrees with our previous 

definition of the distortion function as the difference between the coordinates 

(x′, y′) and (x, y). 

It may seem from the definition of the distortion that any set of orientation 

parameters is possible, for once they are fixed the theoretic image is defined, and 

the distortion at any point would just be the difference between its real and 

theoretic coordinates. We will see that this is not true, but nonetheless the only 

restriction applies to the projection centre and it is indeed true that, in principle, 

any collection of values for the other six parameters may be selected at will. 

Let two points from the object be aligned with a projection centre O1. Their 

theoretic image will be a single point, and it will be as well their real image. If we 

now move the projection centre to a different position O2, the two points will not 

in general be aligned with O2, and their theoretic images will not be a single point 

any more, nor will their real images be. A set of points aligned with the projection 

centre, i.e. a straight line passing through the projection centre, is a projective ray. 

The set of projective rays is different for every projection centre, and so: Given an 

image {(x′, y′)} there is only one possible projection centre O which, combined 

with some other values for the six other parameters, whatever they be, and 

composed with a distortion, whatever it be, can make the given image arise out 

from the given object. 

The previous assertion has to be polished. We do not have the image of the 

whole space; we will in general not even have couples of points aligned with the 

projection centre. But the fact that some two point do not have the same image 

implies that the projection centre cannot lie on the straight line joining those two 

points. Furthermore, alignment is just one particular example, and the relative 

position on the photograph of the image of the measured object points will always 

provide information about the position of the projection centre. These 

considerations lead to the study of the correct placing of object points so that the 

projection centre can be well defined by the measured pairs {(X,Y,Z), (x′, y′)}. But 

this is not the aim of this paper and I shall not dwell on it. 

The need of a perfect projection centre is not so much an idealisation as it 

may seem at first. The precision in the definition of the projection centre is of 

interest with respect to the object space, to the object size, while the actual 

manufacturing uncertainty is in the order of magnitude of image precision, a few 

microns. 
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The projection centre staying fixed, the effect of the variation of any other 

parameter is a function form the points in the plane to the points in the plain; that 

is, a distortion. 
 

Fig. 1.     Images differing in parameters other than the projection centre 

 
 

Fig. 1 pictures two distinct projections that differ in parameters other than the 

projection centre coordinates. If the parameters of T1 and those of T2 are known, in 

order to know the coordinates by the projection T2 of a certain point it is not 

necessary to know the original position of the point in space, and the knowledge 

of its coordinates by the projection T1 suffices. Hence the passage from T1 to T2 is 

a function from the plane into the plane, and this is a distortion; and if we have 

that (T1, 1) is a possible solution for the image, then (T2, 2) will also be a solution 

for some other 2. This 2 is such that 2 − 1 is the opposite of the variation 

undergone by the theoretic image when passing from T1 to T2. 

The set of possible (T,  ) is therefore infinite, and a decision has to be made 

to select one particular solution thereof. 

Its consequence in designing the distortion model 

The distortion function is usually expressed as a linear combination of some 

primitive functions. This set of functions is called base, and together with the 

selection criterion, whose need is derived from the previous discussion, defines 

the model. However, the base might be so designed that there is only one possible 

solution (T,  ), i.e. that linear combinations from the functions of the base can 

only express a restricted set of all possible distortions, in such a way that there is 

always one and just one solution (T,  ). In those cases there is no need for a 

subsequent selection criterion, and the base alone defines the model. 

Let  be a base; I shall denote by   the set of all linear combinations of 

functions of the base. In the following sections a base  will be developed such 

that the only possible solution (T,  ) with   is, amongst the infinite solution 

pairs (T,  ), the one in which  is smallest. 

The measure which I adopted to quantify the size of a distortion function is 

the quadratic mean, viz. ∫F  

2
 ds, where F denotes the photograph, that is, the 

domain of the integral is the photograph, and ds is the differential of surface. To 

actually obtain the mean we should further divide by the total surface of the 

T1 

T2 

π1 

π2 

x2 y2 

x1 

y1 

O 
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photograph and extract the square root, but these can be omitted when comparing 

distortions one to another. 

DISTORTIONS CORRESPONDING TO EACH PARAMETER 

Radial and tangential decomposition 

Because of the radial symmetry of objectives the distortion is better 

expressed in polar coordinates, and the values it takes are not of the form (Δx, Δy), 

but rather (Δr, Δt), where r is the radial coordinate and t = rθ, where θ is the 

angular coordinate. Hence, (Δr, Δt) =  (r,θ). Actually, Δt is applied along the 

perpendicular straight line to the radial direction, not along the arc. 

The origin of the polar system is not the origin of the image (fiducial) 

coordinate system, which may be anywhere, but the principal point. For this 

reason (x, y) and (r,θ) will henceforth denote the theoretic coordinates with respect 

to the principal point, which do not depend upon the parameters xp, yp. The real 

coordinates are therefore 
 

 (x′, y′) = (x, y) +  (x, y) + (xp, yp), (1) 
 

where the distortion is computed in polar coordinates as just explained. 

Distortions corresponding to f and κ 

In this and the next sections the distortions equivalent to the variation of each 

orientation parameter will be derived, with exception of (XO,YO,ZO) that are not 

equivalent to any distortion and must remain fixed. The easiest parameters to 

handle are the three ones defining the image coordinate system: a change in the 

parameters xp, yp will cause an equal change of the distortion in all points. It 

becomes less simple when expressed in polar coordinates, but in any case these 

parameters are not varied alone, and a change in them is always taken jointly with 

a change in the principal point itself, as will be explained in the next section. 

A variation in κ will add an equal rotation to the distortion function, centred 

at the principal point (according to the definition of κ, xp and yp), and so it is 

Δt = Δκ r. Thus, if the κ parameter of a photograph is increased by an amount Δκ, 

the tangential distortion has to be modified by −Δκ r so that the composition D◦T 

remains the same. 

The variation of the projection distance f is easy to study as well. It will scale 

the image from the principal point as centre, namely Δr = (Δf  / f ) r. The f in the 

denominator is the original one, previous to the modification. Thus, the radial 

distortion will have to be modified by −(Δf  / f ) r, and vice versa. 

Distortions corresponding to Ω and Φ; qualitative analysis 

Fig. 2 shows two projections where the only parameters that vary from one to 

the other are Ω and Φ. These parameters define the orientation of the projection 

plane, and hence that of the principal ray, the one corresponding to the principal 

point. Let us suppose that xp = 15 μm and yp = 0 μm, as shown in Fig. 2 in π1 
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(15 microns is very little and it is not visible). The principal ray is a definite line of 

the object space, that may intersect the object at, for instance, a building's corner. 

This definite point will have a real image, whose actual image coordinates need 

not be (xp, yp), in which case the distortion at the principal point will not be zero. 

The upper right of Fig. 3 represents the real image, and the upper left the theoretic 

image according to T1. 

 

Fig. 2.     Images differing in Ω and Φ (left) 

Fig. 3.     A real image and three possible theoretic images for it (right) 

                      
 

If we now change the Ω and Φ parameters, the principal ray will change 

accordingly, and it may now come, for instance, from a point in a bush, which 

becomes the new principal point. We are supposing that no other parameter 

changes, and in particular xp and yp do not, so the principal point stays at fifteen 

microns form the theoretic centre of the image coordinate system, and the 

theoretic image is that shown in the lower left of Fig. 3. The bush is far away from 

the origin in the real image, so the distortion at the principal point is a huge one.  

If we want the distortion at the principal point to be zero, the parameters xp, yp 

need to be changed so as to make them equal to the real image coordinates of the 

new principal point. The new projection (Fig. 3, lower right) is different from T1, 

but not as much as T2. 

It is illuminating to imagine the theoretic image axes sliding through the 

plane as the parameters xp,  yp and κ are varied. And not only the axes, but the 

photo frame bounded to the axes as well. And when a set of values for xp,  yp 

and κ is fixed, the axes stop, and a definite window is selected form the infinite 

plane π, and this becomes the theoretic image. If different values were taken for 

those parameters, a different window would be drawn, and a different theoretic 

image would arise. The theoretic position of the principal point image with respect 

to the image coordinate centre, the pair (xp, yp), may or may not coincide with the 

real one. 

This concept is largely misunderstood. The misconception stems from the 

identification of the (xp, yp) parameters with the principal point. These are not the 

principal point. The Ω and Φ parameters are the principal point. The parameters 

xp and yp are better understood as the position of the coordinate system centre with 

T2 T3 

T1 real 

q q 

q q 
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respect to the principal point, and not the other way round; and they are just the 

theoretic position, prior to distortion. 

Therefore in formula (1) the values xp, yp are the theoretic coordinates, which 

will only coincide with the real ones if the distortion at the principal point is zero. 

The same applies when going back from the real coordinates (x′, y′) to the theoretic 

(x, y), which is just the inversion of formula (1). 

To help comprehending this concept, a real image may be imagined perfect 

in all of it save at a small area around the principal point, as if a small bulb had 

been approached to the principal point, heating the film (these days the pixel 

matrix) up to deformation. The distortion at the principal point will not be zero 

and its image coordinates will not be (xp, yp). If on the contrary we insisted that the 

image coordinates of the principal point be (xp, yp), or which is the same that the 

distortion at that point be zero, the former distortion at that point will thereby be 

transferred to all the photograph. 

It is however very inconvenient to have a non-zero distortion at the principal 

point, for even if when understood the concept may appear clear, it is not common 

to the photogrammetrist, as far as I know, to understand it in such a transparent 

manner, let alone to a majority of operators with little photogrammetric 

knowledge. For analogical cameras this is a mild restriction, because the nature of 

lenses makes the central part of the image the most perfect of it; but in digital 

cameras the camera distortion is the combination of both the objective and the 

pixel matrix distortions. The matrix is not a perfect grid, and irregularities may be 

present in any or the other area of it without any particular preference, and the 

imposition that the distortion be zero at the principal point is not a valid one from 

the theoretical point of view. However, for the above mentioned reason and lest 

confusion reigns, we had better restrict ourselves to distortion functions that are 

zero at the origin. 

So when the base  shall be created, the only solution (T,  ) with   

will not exactly be the one for which   is smallest amongst all possible solutions, 

but the one in which it is smallest among those solutions where  (0,0) = (0,0). 

In order that the distortion at the principal point is ever zero, when the Ω 

and Φ parameters are varied it is also necessary to vary xp and yp accordingly and 

vice versa. It is well known and not difficult to show that for any two central 

projections with a common projection centre there is a point from where image 

angles are equal, and so the transformation from one image to the other is a radial 

displacement of the points with respect to the isocentre, which is how that singular 

point is known. The isocentre's projective ray is the bisector of the two principal 

rays; therefore, the isocentre lies between the two principal points. 

The variations in Ω and Φ which we would be dealing with will be very 

small, the subsequent displacement of the principal point being just a few pixels. 

Therefore the displacement of an image point towards the isocentre will not be 

distinguishable form a displacement towards one of the principal points. The 

displacement is 

 Δr  = ar
2

 cos θ + br
2

 sin θ, (2) 
 

for two constants a and b depending upon the rotation that transforms one 

projection into the other. In the vicinity of the isocentre, where the difference 

between a displacement toward the isocentre and a displacement toward one of the 
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principal points could be significant, the displacement function has a second order 

zero, so it is not the source of any problem. Hence: A displacement of the 

principal point does not induce any tangential distortion. 

I have presented the previous result as a consequence of a combined change 

in the xp, yp, Ω and Φ parameters, but this is not exactly true. Formula (2) is the 

resulting distortion for the rotation that carries one projection plane onto the other. 

Since the orientation of the plane is defined by the Ω and Φ parameters, these 

parameters will do vary indeed. But, as we have already mentioned, the origin of 

the κ angles has an indirect definition, and a change in the projection plane 

orientation may affect it as well. This is not significant to our previous reasoning. 

The relevant fact is that a change in the xp and yp parameters can be combined with 

a change in the Ω, Φ and, possibly, κ parameters, so as to generate a distortion like 

that in (2); and similarly can Ω and Φ be combined with xp, yp and, possibly, κ. 

Moreover, the variation in the κ parameter is not necessary in order for the 

condition  (0,0) = (0,0) to hold. If it were not included, an extra κ rotation would 

appear in equation (2). 

Distortions corresponding to Ω and Φ; Formulae 

We want to relate the change in the principal point: (Δxp, Δyp) = (εx, εy); the 

parameters a and b of the distortion of formula (2), and the variation of the 

parameters Ω, Φ and κ. Their variation is not independent, and if the parameters of 

any of the three groups are varied the others have to be changed accordingly so 

that i) the composition D◦T remains the same and ii) the condition  (0,0) = (0,0) 

continues to hold. 

The relation of more interest now is that between (εx, εy) and (a, b). By known 

geometric constructions it is found that if the principal ray is changed so that the 

position of the principal point varies an amount (εx, εy), the theoretic image will 

change by an amount  
 

Δr = −(εx / f
2
)r

2
 cos θ − (εy / f

2
)r

2
 sin θ. 

 

Since the real image remains the same, the parameters a and b have to be 

varied by an amount 

 Δa = εx / f
2
,       Δb = εy / f

2
 (3) 

 

and conversely, if the parameters a and b are increased by (Δa, Δb) the principal 

point has to be moved by (Δa f
2
, Δb f

2
). 

The variation of the parameters Ω, Φ, κ is not needed for the analysis of the 

distortion and will be given for completeness. It can be found as follows. Let 

α1 = εx / f , α2 = −εy / f , and let M
x
α2

 be a rotation of angle α2 centred at the projection 

centre O and around the direction of the object X axis, and M
y
α1

 an analogous 

rotation around the direction of the object Y axis. Whether the numerical values of 

the angles are α1 and α2 or −α1 and −α2 depends upon the choice of signs for the 

rotations. The matrices obviously remain the same, and have to be taken so that 

the displacement of the principal point due to the rotations is (εx, εy). The new 

rotation matrix M′ transforming from the object coordinate system to the image 

system as a function of the former matrix M is 
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M′ = M
y
α1

 M
x
α2

 M 
 

in the first order of approximation. The exact formula is somewhat more involved 

but given that the displacements (εx, εy) are small it is not necessary. The new 

values for the parameters Ω, Φ, κ will be derived from M′. Their relation to the 

original ones and the angles α1 and α2 depends on the expression relating the three 

parameters with the rotation matrix. If they are the usual primary, secondary and 

tertiary rotations the changes they undergo are 
 

ΔΩ = α2′ sec Ω,      ΔΦ = α1′,      Δκ = α2′ tan Ω, 
 

where 

 α1′=α1 cos κ − α2 sin κ 

 α2′ =α1 sin κ + α2 cos κ 

GENERAL DESIGNING OF THE BASE 

Removal of orientation-equivalent components 

If we collect up the main results from the previous section we have 
 

 f → Δr  = ar, 

 κ → Δt  = ar, (4) 

 Ω,Φ,κ,  xp, yp → Δr  = ar
2

 cos θ + br
2

 sin θ, 
 

where the different a's are naturally not the same. 

Expressions (4) mean that for any two possible decompositions (T1, 1) and 

(T1, 1) with  (0,0) = (0,0) the difference 2 − 1 will be expressible as a combin-

ation of those four components, i.e. 
 

( 2 − 1)r = ar + br
2

 cos θ + cr
2

 sin θ, 

( 2 − 1)t = dr. 
 

Let  be a base, 
 

 = r t = {gr1, gr2, . . . , gt1, gt2, . . .}. 
 

The expression of any distortion function  by means of the base  will be of the 

form 

r = a1gr1 + a2gr2 + . . . , 

t = b1gt1 + b2gt2 + . . .   
 

Let 1 and 2 be as above and write 1 = ∑ai1gri + ∑bi1gti and 2 

accordingly. If we let gr1 = r, gr2 = r
2

 cos θ, gr3 = r
2

 sin θ, and gt1 = r, then ai1 = ai2 

and bi1 = bi2 will be satisfied for all coefficients with exception of a1, a2, a3 and b1; 

that is, if the projection T is varied within its possible values, the  from (T,  ) 

will vary in such a way that if we let   all its coefficients will remain 

constant with exception of a1, a2, a3 and b1. 
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If T is varied within the space of possible solutions there will be a particular 

point at which a1, a2, a3 and b1 vanish. Let rT = {r, r
2

 cos θ, r
2

 sin θ}, tT = {r} and 

T = rT  tT , and let  = T   *;that is, we write  as the union of orientation-

equivalent components and other components. Now let   be designed so that every 

component of  * is orthogonal in the photograph space to those of T. Then, 

according to the properties of orthogonal functions, the previous particular point 

will have the least  of all possible distortions that can be assigned to the image, 

where the size is measured by the mean quadratic value, as explained at the end of 

the section “The mathematical setting”. 

The restricted base  * is the one to be used in calibration processes, provid-

ing simultaneously uniqueness and best possible solution. 

Choice of the orthogonal bases 

Even if orthogonality is only required among T and  *, it is still interesting 

that all functions be orthogonal among each other, due to many advantages of 

orthogonal bases that will be discussed later. Any radial distortion will be ortho-

gonal to any tangential one, so orthogonality has only to be achieved within the 

radial and tangential components. 

Distortion components can be classified as symmetric and asymmetric ones. 

Symmetric ones are those that do not depend on θ. Given that an r component is 

present in both rT and tT, a polynomial base seems the natural solution for the 

symmetric distortions. Orthogonal polynomials may be derived recursively; in 

order to find the coefficients of the k-th polynomial a linear system with k −1 

unknowns has to be solved, but the systems themselves may be solved recursively. 

The obtained coefficients will be different for different rmax, i.e., the 

maximum possible value of r. For this and other reasons it is much convenient to 

normalise the values of r as r/rmax, that is, formulae should be entered with the 

value s = r/rmax rather than with r itself. Therefore we have s[0,1]. 

The symmetric radial distortion has been traditionally expressed as an odd 

polynomial. This guarantees infinite derivability at the origin. However, I see no 

reason why it should be imposed that the distortion function be infinitely derivable 

at the origin. I find “smoothness” enough, and smoothness means continuity of the 

first derivative. I recall that there are cases when even a linear interpolation is 

performed between given points. So let smoothness be the condition to be satisfied 

by the functions of the base, in addition to  (0,0) = (0,0). 

But odd polynomials have also some advantages. The model being developed 

will, in both cases, be capable of expressing any distortion that may exist; in 

particular, any distortion expressed by some other model shall be also expressible 

by this model by finding the values for the coefficients that yield the same total 

distortion than the one we are given. If the latter makes use of odd polynomials, 

let us suppose to fix our ideas that it includes r, r
3
 and r

5
 components. In order to 

express that distortion by a linear combination of the components of a base built 

up of complete polynomials five components will be necessary, while if the base 

is composed of odd polynomials three components will suffice. Odd polynomials 
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are also endowed with the mathematical perfection that is so pleasant to see in 

whatever model. 

For all the above it was finally decided to derive two bases: the complete 

model (CM) and the odd model (OM). The constant term will be zero for all the 

polynomials. The degree of the k-th polynomial will be equal to k in the CM and 

to 2k −1 in the OM. The slower growth of the degree in the CM has numerical 

advantages, but these days they are negligible. On the other hand it turned out that 

the coefficients of the OM increase slower. 

The asymmetric components 

With regard to the non symmetric components, orthogonality will exist 

among any two components g1, g2 if, for instance, for any radius r the condition 

∫ 0

2π

 g1 g2 dθ = 0 is satisfied. This is not exact for a rectangular shaped domain, for in 

that case θ cannot take any value for high values of r. We shall come to this later 

but for the moment we will take that condition as being true. 

It is well known that in the interval [0,2π] both ∫cos mθ cos nθ dθ and 

∫sin mθ sin nθ dθ are zero whenever m and n are different, and ∫cos mθ sin nθ dθ = 0 

always. I will not repeat here the theory about orthogonal functions, and I will 

simply state that the simplest solution for the asymmetric part of the base is 
 

{pk cos cθ, pk sin cθ}, 
 

where pk are the polynomials from the symmetric base. In order to simplify 

the notation, I shall let Sc represent both cos cθ and sin cθ, and if h is any function, 

by hSc I shall denote the pair {h cos cθ, h sin cθ}. 

This base does not conform to our requirement that its components be 

smooth. An analysis of these functions reveals that there cannot exist an 

r component if c is odd. For the tangential components this is made apparent by 

straight lines passing through the origin. These components would generate an 

angle at the origin. The pk polynomials have to be replaced by some other 

polynomials qk that do not include a first degree term; that is to say, a base has to 

be built starting from r
2
. This does not break orthogonality between even c and 

odd c components, for if c and d are two such values, and let h1, h2 be two 

functions of r, for any fixed r we have 
 

∫ 0

2π

 h1(r) Sc h1(r) Sd dθ = h1(r) h2(r) ∫ 0

2π

 Sc Sd dθ, 
 

and so h1 and h2 may be any functions. 

We have q1 = r
2
, which implies that the base includes the components r

2
 cos θ 

and r
2

 sin θ that are needed for rT. In the CM the q polynomials will include all 

the monomials starting from r
2
, in the OM they will be even polynomials (when 

combined with the odd Sc term it results in an odd component). 

The mean value of any asymmetric component for any fixed r is zero; it need 

be, for otherwise then the component would not be orthogonal to some pk (and 

possibly to all). Let   , this property implies that the value of the symmetric 

part of  is at every r equal to the mean value of the distortion for that value of r 

all around the photograph, which makes sense. 
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THE FORMULAE 

Derivation of the polynomial base 

A base was first derived in the supposition that the domain of (s,θ) pairs be 

the rectangle [0,1][0,2π ]. The coefficient ai of the k-th polynomial can be 

expressed for both the complete and odd models by a closed form involving 

factorials depending on k and i. 

But these polynomials satisfy orthogonality for a faked domain which does 

not correspond to the shape of a photograph. In a real photograph there is “more” 

or “less” photograph for different values of s. This is represented by a weight 

function. If the photograph is a rectangle with its sides in a ratio b/c, such that 

b ≤ c, and the values of b and c are so normalised that b
2
 + c

2
 = 1, the weight 

function is that of Fig. 4 and its expression 
 

 

 

 

 
 

 

Fig. 4.     Weight function for a rectangular photograph 

 
 

The condition that must be satisfied by two polynomials h1, h2 from the base is 
 

∫ 0

1

 w h1 h2 ds = 0. 
 

Several solutions may be adopted. One of them consists in dividing each pk 

and qk by √w. This however is not possible because the functions from T cannot 

be modified. Since the most important condition regarding orthogonality is that 

the functions from  * be orthogonal to those from T, we may divide each one 

from  * by w, at the price of losing orthogonality within it. Apart from the loss of 

orthogonality, this approach has the disadvantage of implying g(1,θ) = 0 for 

every g in  *. The drawbacks of this restriction will be discussed when analysing 

trigonometrical bases. 

The above solutions being discarded, the one which remains and which is 

usually the best approach with respect to a weight function, is to derive the 

polynomials anew taking into account the weight function. In order to do so it is 

necessary to evaluate the integrals of the powers of s times the weight function. 

The details will be omitted here. The author will be pleased to provide them to 

0 b c 1 
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whomever asks for them. Let b and c denote the sides of the rectangle, so normal-

ised that √(b
2
 + c

2
) = 1. For n = 0, i.e. the 0'th power of s, the result is 

 

∫ w dr = ∫ ds = S = bc. 
 

For even n the first values of ∫ w r
n

 dr / bc are 

 

n ∫ / bc 

2 1/3 

4 1/5 – 4/5(bc)2 

6 1/7 – 8/35(bc)2 

 
The expressions for odd n have an extra term which is not rational in b and c. 

The values of these integrals an hence the coefficients of the polynomials 

arising thereof depend upon the ratio b/c. The author derived the polynomials for 

ratios ranging from 1/1 to 9/5. Since the polynomials vary little I decided to take a 

particular ratio for the definition of the polynomials. For the CM I chose the 

ratio 8/7 for the pk series and 3/2 for the qk ones, for these are the simple ratios that 

yield the values of the coefficients of the second polynomials 3, –2 and 4, –3 

respectively, up to two decimal places (and in the first case up to three indeed). 

For the OM the chosen ratio was √3 / 1 for both series, because for this value the 

second polynomials are exactly p2 = 2s
3
 – s and q2 = 2·5s

4
 – 1·5s

2
. 

Here the polynomials are shown for both models. To the right of each of 

them its quadratic mean over the photograph is displayed. This mean varies with 

the image shape too, but it varies very little. The displayed values correspond to a 

ratio of 4/3 for the CM and √3 / 1 for the OM. 
 

pk polynomial series for the CM. 

name polynomial || pk || 

p1 s 0·58 

p2 3s2 – 2s 0·28 

p3 9s3 – 11·4s2 + 3·4s 0·17 
p4 29·2s4 – 53·1s3 + 30·1s2 – 5·2s 0·13 

p5 95·8s5 – 225·4s4 + 187·1s3 – 63·9s2 + 7·4s 0·096 

p6 320·3s6 – 922·1s5 + 1004·9s4 – 511·4s3 + 119·2s2 – 9·9s 0·077 

 

qk polynomial series for the CM. 

name polynomial || qk || 

q1 s2 0·40 

q2 4s3 – 3s2 0·22 
q3 14·5s4 – 20·3s3 + 6·8s2 0·14 

q4 53·5s5 – 107·8s4 + 69·5s3 – 14·2s2 0·10 

q5 197·5s6 – 511·4s5 + 476·9s4 – 188·2s3 + 26·2s2 0·082 
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pk polynomial series for the OM. 

name polynomial || pk || 

p1 s 0·58 
p2 2s2 – s 0·26 

p3 4·8s5 – 4·7s3 + 0·9s 0·14 

p4 12·8s7 – 19·1s5 + 8·2s3 – 0·9s 0·093 
p5 38·4s9 – 76·2s7 + 50·5s5 – 12·6s3 + 0·9s 0·069 

p6 119·5s11 – 296·7s9 + 268s7 – 106·5s5 + 17·6s3 – 0·9s 0·055 

 

qk polynomial series for the OM. 

name polynomial || qk || 

q1 s2 0·41 
q2 2·5s4 – 1·5s2 0·20 

q3 6·4s6 – 7·2s4 + 1·8s2 0·11 
q4 19·1s8 – 31·6s6 + 15·7s4 – 2·2s2 0·080 

q5 60·4s10 – 131s8 + 97·8s6 – 28·9s4 + 2·7s2 0·061 

 

 
Figures 5–8 displays the first polynomials for both models. 

 Fig. 5.     pk series for the CM Fig. 6.     qk series for the CM 

 Fig. 7.     pk series for the OM Fig. 8.     qk series for the OM 
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The distortion function 

It is as follows: 

 

Symmetric components: 
 

r = a2p2 + a3p3 + a4p4 + . . . 

t = b2p2 + b3p3 + b4p4 + . . . 

 

Asymmetric components: 
 

r = c3q2 cos θ + c4q2 sin θ + c5 p1 cos 2θ + c6 p1 sin 2θ + c7q3 cos θ + c8q3 sin θ + 

c9 p2 cos 2θ + c10 p2 sin 2θ + c11q1 cos 3θ + c12q1 sin 3θ + . . . 

 

t = d1q1 cos θ + d2q1 sin θ + d3q2 cos θ + d4q2 sin θ + d5 p1 cos 2θ + d6 p1 sin 2θ 

+ . . . 
 

Thus, except for the components ar
2

 cos θ and r
2

 sin θ of t  the development 

is the same for the radial and tangential distortions. Those components in the 

radial distortion as well as a1 p1 for the symmetric part of both may appear when a 

given distortion expressed by some other model is expressed by this model. 

Alternative asymmetric decomposition 

For each pair k,c each set of four parameters pkSc, if c is even, or qkSc if c is 

odd, may be replaced by four other parameters which, when taken together, are 

equivalent to the previous four. Let these components be written as 
 

pku−c , pkv−c , pku+c , pkv+c , 
 

or qk if c is odd. 

The components u−c ... v+c are vectors of constant modulus equal to 1. The 

vector u−c forms at a point with coordinates (r,θ) an angle with the radial direction 

equal to −cθ, and the vector u+c and angle equal to cθ. The vectors v−c, v+c form 

the same angles with respect to the tangential direction, and so they are 

perpendicular to u−c and u+c respectively. Therefore at a point on the positive side 

of the x axis the u vectors follow the axis direction while the v vectors are parallel 

to the y axis and directed toward the positive side. As we move along a circle 

centred at the origin the vectors rotate clockwise/counterclockwise (−c/+c), 

performing a total of c revolutions with respect to the radius when the circle is 

complete. I will hence call this the model of the rotating vector. With respect to a 

fixed direction in the x, y plane these vectors perform 1 − c and 1 + c rotations as 

they turn around the origin. 

It should be noted that if αk,c, βk,c are the coefficients corresponding to pku−c 

and pkv−c the composition αk,c pku−c + βk,c pkv−c is a single vector with constant 

modulus that performs the c revolutions as it turns around the origin, the modulus 

of which as well as its direction and sense for θ = 0 are determined by αk,c and βk,c, 

and the same is true for the +c components. The coefficients corresponding to the 

+c components I will call γ and δ. 

See the example at the discussion of the decentring distortion below. 
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The radial and tangential distortions generated by these components are, 

apart from the multiplier pk or qk and omitting the subindices, 
 

r = α cos (-cθ) − β sin (-cθ)  +  γ cos cθ − δ sin cθ, 

t = α sin (-cθ) + β cos (-cθ)  +  γ sin cθ + δ cos cθ ; 
 

and the components x and y, 
 

x = α cos (1−c)θ − β sin (1−c)θ  +  γ cos (1+c)θ − δ sin (1+c)θ, 

y = α sin (1−c)θ + β cos (1−c)θ  +  γ sin (1+c)θ + δ cos (1+c)θ. 
 

If a set of four components of the radial/tangential model is 
 

r = apk cos c′θ + bpk sin c′θ, 

t = cpk cos c′θ + dpk sin c′θ, 
 

(I have written c′ to distinguish it from the c coefficient) the relation between 

the two sets of four parameters is 
 

a = α + γ b = β − δ α = (a − d)/2 β = (b + c)/2 

c = β + δ d = −(α − γ) γ = (a + d)/2 δ = −(b − c)/2 
 

If the model of the rotating vector is used an exception has to be observed at 

the (k, c) = (1,1) components, for we have seen that the components r
2
Sc of the 

radial distortion need to be present in the base so that they can be omitted from the 

distortion function. This is equivalent to imposing α = −γ, β = δ for those 

components, viz. α1,1 = −γ1,1, β1,1 = δ1,1. 

It is easily seen that α1,2 and β1,2 are the parameters of an affinity 

deformation: a difference in the x and y scales and a missorthogonality of the axes 

(i.e. the pixel grid). Thus, the use of the rotating vector may be of interest for the 

(1,2) components if we want to include just the affinity distortion or one of its two 

components. 

Orthogonality of the asymmetric components 

There remains a problem with respect to the asymmetric components. On a 

square photograph, in the interval 1/√2 ≤ s ≤ 1 the integral to be considered is not 

∫ 0

2π

 but ∫ L ( s ) , where L(s)  is the union of four equal intervals centred at π/4, 3π/4, 

5π/4 and 7π/4, whose length diminishes as s grows. Several solutions were 

considered, but none of them resulted in simple expressions. 

On the other hand, the integral of the product of any two functions in the 

circle 0 ≤ s ≤ 1/√2 will always be zero, and that represents roughly ¾ of the 

photograph. As of the area 1/√2 ≤ s ≤ 1, due to the many symmetries of 

trigonometrical functions: (i) orthogonality is retained with respect to the sym-

metric components, (ii) orthogonality is retained between cos and sin components 

and (iii) orthogonality is retained between any two Sc and Sd if c and d are of 

different parity. This properties imply that the first loss of orthogonality does not 

appear till 3θ, and the first loss between a component of T and one of * does not 

till 4θ, where I, for instance, have never got to. 



 17 

All of the above properties are still satisfied within a rectangular photograph, 

the only difference being that the circle where the circumferences are complete 

represents a lower proportion of the total image area. 

Hence, for the sake of simplicity and for practical reasons, I judged we had 

better not perform any modification in this respect, and hereupon my development 

of the base finishes. 

The graphs of the first asymmetric components 

Fig. 9–12.     c1,c2; d1,d2 components. 

     

The components c1, c2 will normally not exist since they vanish if the 

principal point is calibrated. 
 

Figs. 13–16.     c3,c4; d3,d4 components. 

     

Figs. 17–20.     c5,c6; d5,d6 components. 

     

About the coefficients 

In this section, two decisions that were made in the design of the base will be 

discussed. 

The first one deals with the number of figures of the coefficients. In order for 

the model to be usable the polynomials have to be unambiguously defined. This is 

why its coefficients were rounded to the first decimal place. But care should be 

taken when rounding polynomial coefficients. One could be tempted to suppose 

that the precision of any coefficient is to be regarded with respect to itself, that is, 

to pay attention to the number of supplied figures rather than to the position of the 

last one. But this is wrong. The coefficients of individual monomials within a 
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polynomial may be very high and yet the polynomial take small values. Rounding 

errors must always be considered in absolute value, no matter how high the 

coefficient be, lest significant differences between the modified polynomial and 

the original one arise. Rounding to an integer or to half an integer is not 

acceptable. It is also absolutely necessary that the sum of the coefficients not be 

varied, viz. that it be kept equal to 1. 

The other decision to be commented here is the one of designing the 

polynomials so as to make max|pk| = pk(1) = 1, and the same is true for qk. The 

alternative to be considered is that of multiplying the polynomials by a constant so 

that (∫F g)/bc, i.e., the mean quadratic value, equals 1 for every g . If that 

condition is satisfied the functions are said to be normalised. Both possibilities 

have advantages and disadvantages, and what finally made me decide about the 

former was the fact that its coefficients are simpler. 

ANALYSIS OF OTHER MODELS 

Trigonometrical base for s 

The trigonometrical base is possibly the easiest one to handle. There are two 

versions: 

{1, sin 2π ns, cos 2π ns} 

{sin π ns} 
 

The first one has terms that are different from zero at s = 0. If the infinite 

components could be taken this would not be a problem, but that is impossible. 

Those terms cannot be simply eliminated, since the resulting base would be 

restricted to very particular functions. 

The second one has not this problem but it has the one that every 

component g has g(1) = 0. The infinite sum ∑ akgk would be equal to the 

symmetric part of r, which I shall call rs, in [0,1) and equal to zero at s = 1 

(r = rmax), and similarly for ts. Any finite sum will approximate very bad the last 

part of rs, for it will always be a continuous function f satisfying f(1) = 0. Impos-

ing s(1) = 0 is not acceptable. Consider for instance the very common case where 

rs is always concave or always convex. 

Before pointing a possible solution to this problem I will first state another 

one. This base is complete, so it can in particular be used to approximate s in [0,1). 

Hence, the more terms we take the more correlated the distortion function will be 

to the focal length. The most correlated of all terms is the first one. Now, the 

solution to the previous problem is to add the function s to the base, which 

worsens this problem. 

A possible solution to both problems consists in modifying each sin π ns by 

adding a suitable multiple of s so that the resulting function be orthogonal to s. 

The first components thus created are 
 

 sin πs − 1·28s, sin 2πs + 0·66s, 

 sin 3πs − 0·55s, sin 4πs − 0·12s. (5) 
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Some of the properties of the trigonometrical base are lost, in particular 

orthogonality among its components, but this property had never hold due to the 

shape of the photograph. For it to hold it would be necessary that, in addition to 

the s term, sin mπs terms be added for all m < n. The formulae from (5) is not a 

bad solution at all, but it is not clear that it be simpler than the polynomial base. 

The displayed components are the analogous of pk, starting at k = 2; the ones 

replacing the qk need also be obtained. On the one hand, they need to be 

orthogonal to s
2
; on the other, they need to have zero derivative at the origin. 

These conditions can be satisfied if they are defined as s(sin nπs + cns), and again 

the simplicity of the original trigonometrical base is lost, as well as orthogonality 

among its components. 

These problems with the trigonometrical base show that the requirement that 

the components pk and qk be orthogonal to s and s
2
 respectively leads naturally to a 

polynomial base for both of them. 

Odd polynomial for the symmetric radial distortion 

The traditional model for the symmetric radial distortion is an odd 

polynomial whose coefficients are the parameters of the model. I have already 

pronounced myself about the restriction to odd terms (cf. section Choice of the 

orthogonal bases). It could be also argued against this restriction that parabolic 

like distortions will not be properly represented by this model. However, strange 

as it may be, odd polynomials can produce arbitrarily sharp approximations to an 

even polynomial within an interval; but surely a quadratic term would be better. 

An important disadvantage arises if r is expressed in its original units, as is 

usually the case. This causes the powers of r to raise to very high values near the 

corners of the photograph or even at a mean distance, thereby the coefficients 

being very small (e.g. 10
-14

), providing a faked appearance of being negligible. 

This is not actually a deficiency of the model itself, but of the way it is usually 

applied. 

The most severe problem of this model is the extreme correlation among its 

components. A very small change in the distortion function may therefore cause a 

big change in the parameters. Another consequence is that the removal of the 

highest degree term requires all the other coefficients to be computed again. 

Another one is that the presence or absence of r term does not mean a presence or 

absence of linear tendency (and this in turn implies that the optimum solution, 

though not difficult to obtain, requires some more calculations). Yet another one is 

the fact that, even if we use the variable s = r/rmax, the absolute value of the 

coefficients is by no means representative of the magnitude of the photograph 

distortions. For example, let rs = −24s + 97s
3
 − 80s

5
, the maximum value of rs is 

not near 100 as it may seem, but equals 8; and that of 50s
3
 − 130s

5
 + 80s

7
 is 3. 

Finally, the high correlation may cause computation problems. 

All these problems disappear with the designed base. Individual terms may 

be eliminated without the need to recompute the other ones, and the coefficients 

together with the given values of || pk || do represent the magnitude of the distor-

tion. The first of the previous examples equals rs = 0·3p1 + 9·3p2 − 16·7p3 (OM), 

whereby we find || rs || = ((0·3|| p1 ||)
2
 + (9·3|| p2 ||)

2
 + (16·7|| p3 ||)

2
))

1/2
 = 5·1 and 

max | rs |=3·4. 
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Decentring distortion 

It is a biparametric model: 
 

x = P1(r
2
 + 2x

2
) + 2P2xy, 

y = 2P1xy + P2(r
2
 + 2x

2
). 

 

I looked for a justification of these components in some photogrammetry 

manuals, but I found none. It seems that manuals copy each other and all rely on 

an article of D. Brown. 

The radial and tangential decomposition of this distortion is 
 

r = 3P1r
2

 cos θ + 3P2r
2

 sin θ, 

t = −P1r
2

 sin θ + P2r
2

 cos θ . 
 

The radial components are the ones equivalent to an inclination of the 

plane π, that should not exist. Whenever an image is presented as having a 

decentring distortion, this may be split into radial and tangential components as 

shown, the radial part be simply dropped and the principal point be changed 

according to (3); and if the other asymmetric radial components of the model, if 

any, are orthogonal to the dropped ones, or if there are no more as is usually the 

case, and whatever the symmetric radial model be, the mean quadratic value of the 

image distortion will decrease, always. 

The fact that a certain physical phenomenon causes a certain change in the 

image coordinates does not mean that such change has to be understood as a 

distortion. If for example a perfect camera be supposed with projection T1; if 

certain rotation is applied to it a new perfect projection T2 will result, that is not to 

be interpreted as projection T1 plus a distortion, but as the perfect projection T2. In 

the like manner, would we take a pair (T1, 1) as the solution if there exists another 

one (T2, 2) with smaller distortions, being the difference in distortions precisely 

the difference between T1 and T2? Certainly not. What should be done is to take as 

the reference projection T that which better fits the image. 

The subject is often better understood if the camera physical reality is 

abstracted, as I have done throughout this work. If the coordinate variation due to 

some actual cause is derived, it should be studied whether the variation can be 

expressed as the composition of a change in the projection and an actual 

distortion. It is only necessary to write the coordinate variation as radial and 

tangential components and see if any of them belongs to T.
a
 

Affinity 

A small affinity may be written as the union of radial and tangential 

distortions as 

r = α r cos 2θ + β r sin 2θ, 

t = −α r sin 2θ + β r cos 2θ. 
 

                                                 
a
 It may not be as easy as that, for terms may appear that are not equal to any from T and yet they are not 

orthogonal to them. However, it comes to pass that real terms can always be easily decomposed in a part included 

in  T  and a part orthogonal to it. 
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It hence represents half of the p1S2 distortions. Its orthogonal complement 

within these distortions is 
 

r = γ r cos 2θ + δ r sin 2θ, 

t = γ r sin 2θ − δ r cos 2θ. 
 

If we want the parameters α and β to explicitly appear in the model, the four 

p1S2 parameters should be replaced by {α, β, γ, δ}, which are those of the rotating 

vector model, as explained above. 

Direct linear transformation (DLT) 

The eleven parameters of a DLT are a mere recombination of the nine 

orientation ones and the two affinity ones, with the important drawback that if 

several images are taken, a different set of parameters will be computed for each 

one, including those that will not vary, namely: f, xp, yp, α and β. 

It is not rare to read about the DLT that “it is suitable for any camera” and 

that “it is not necessary to know the focal length”. These sentences are nonsense. 

Furthermore, the DLT is specially unsuited for large distortion cameras, for it only 

includes an affinity correction. With respect to the second one, I have already 

pointed that the eleven DLT parameters are exactly a central projection plus an 

affinity distortion, which certainly includes a focal length. 

TESTING AND CONCLUSIONS 

General 

Since the development of the base in 2005 it has been applied to many 

different cameras, ranging from an amateur 3 Mpx camera to the self-calibration 

of aerial metric cameras. And the number of points measured for the calibration 

also varied greatly with a maximum of 16 000 for the calibration of a single 

photograph and 4 500 photographs for self-calibration. The computations were 

performed with a program written by the author on the occasion of the 

development of the model. The author also incorporated self-calibration to his 

aerotriangulation program, Aerotri, in the late 2009, thereby allowing the 

possibility of applying the model to self-calibration. Some of the drawn 

conclusions relate to the process of calibrating a camera rather than to the 

application of this model and will be passed over without mention. 

Some points had been foreseen and the tests served to confirm them: 

1. The model proved suitable for all the cameras to which it was 

applied. If few parameters can be determined, either because of few 

measured points or a low stability, few parameters from the model will be 

included; if there are many observations and the camera is stable more 

parameters can be determined. In particular, low-cost cameras with a 

fixed focal length have distortions which are stable enough to be 

modelled well below the pixel size. 
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2. If there is few data the computed distortion components fit the actual 

errors of the observations rather than the distortions. This will happen 

with any model, but is of importance in comparing this model versus the 

grid one, as will be seen shortly. 

 

Some others had not been foreseen: 

 

3. Even with thousands of measured points the distortions are remark-

ably well modelled with a few parameters. The next example will provide 

a remarkable exhibition of this. 

4. Radial components are clearly greater than the tangential ones even 

for high degree components, when in principle the irregularities of the 

pixel grid were expected to nullify the radial preponderance. Therefore 

the main cause of distortion even well below the pixel size is still due to 

the lenses and the radial/tangential model is preferred over that of the 

rotating vector, for it will need less components in order to model the 

camera's distortion with equal accuracy. An affinity component due to the 

difference in the x and y scales is some times an exception to this. 

5. The complete model was expected to behave better than the odd 

model. This is usually the case, for the most common situation is that 

both models yield the same quadratic mean of the residuals but the 

distortion according to the complete model is smaller, that is, the 

complete model fits better the camera distortions. There are cases 

however when the odd model fits better, and the difference may be 

substantial. This happens when the symmetric radial distortion (the 

greater by far, with the possible exception of the affinity component 

mentioned above), instead of having a parabolic-like shape increases 

abruptly at the edge and corners of the photograph. In this case the zero 

of the distortion function, and in general the detail in the function is better 

placer at a more extreme position, and the odd model is more suitable for 

this as can be seen at the graphs of their components. 

So instead of leaving just one model, both models were kept and for 

each camera the calibration is carried out with both of them and the 

solution which seems better is retained. It often happens that the 

difference is not significant. 

A test with sixteen thousand points 

The description of tests with few observations —up to a few hundred for 

calibrations of a single image in laboratory or a few thousand with self-

calibration— would add little to the conclusions listed above. Regarding 

calibrations with a great amount of data, I think it is more interesting to give a 

detailed description of the most careful calibration carried out than to give a 

summarised account of the different cameras and settings to which this model was 

applied. 

The camera is a Canon of 4752  3168 megapixels. It was calibrated for its 

use in creating a 3D model of the Discobolus when this statue was in Spain in the 

year 2009. The professors at the School of Topography of the Polytechnic 



 23 

University of Madrid set up a calibration room by placing ten plotted sheets on a 

wall with 2 106 marks on each making a total of 21 060. Of these, 16 100 fell 

within the photograph limits. In addition to this, some rows of small balls set on 

wires were placed in front of the wall for the correct determination of the focal 

length and the principal point. These have been omitted from the graphs of the 

residuals that follow in order not to disturb the appreciation of regular patterns that 

arise. The marks were correlated by a Matlab program written by the professors at 

the school. Incomplete rows or columns could not be correlated and were 

measured by hand. That break is clearly visible on the graphs of the residuals 

when the distortions are eliminated. 

Below the residuals of the marks after different adjustments are shown. The 

first one is the result of computing the camera orientation without the inclusion of 

any distortion parameter. Actually, the camera exhibited a great difference in the x 

and y scales. I corrected this affinity component as part of the transformation from 

raw pixel coordinates to coordinates centred at the principal point so that the radial 

distortion could be appreciated on the graphs of the residuals, that would 

otherwise be outweighed by the affinity component. This first graph shows clearly 

the prevailing symmetric radial distortion. Note the position of the zero at a high 

distance. This is one of the cases mentioned in conclusion 5 above. Therefore the 

OM models this camera's distortions better than the CM, and the next graphs 

correspond to the OM. 

 

 Fig. 21.     Residuals: no distortion corrected. Fig. 22.     Residuals: a2 corrected. 

  

 Fig. 23.     Residuals: a3 corrected. Fig. 24.     Residuals: a4 corrected. 
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The second image includes just the a2 parameter, and the a3 component with 

its two zeros arises strikingly sharp. In this image the residuals are displayed 

multiplied by a factor of 10. In the first image the factor is 5, and in the 

subsequent images the factor is 20, except for the last one where it is 30. 

The third image has the component a3 applied. Note that in spite of the increase in 

the factor the residuals appear smaller. In this camera as in many others either the 

first two components of the rs or more often the first component alone carry the 

bulk of the distortion. In this image the three rings of zeros of the a4 component 

can be seen, but asymmetries begin to show up. In the fourth image the five zeros 

of the a5 component can still be seen. 

The fifth image has the component a5 applied. The zeros of the next 

symmetric radial component are no longer discernible. Following this the 

rs components b2–b5 were applied. The resulting image is almost identical with 

this one and is not shown. 

Next, the asymmetric components c3–c6 and d1–d6 where computed, and the 

result is shown in the last but one image. Finally the components c7–c12 and d7–d12 

were included. This last image features the residuals multiplied by 30 instead of 

the factor 20 of previous images, for even these higher order component are 

significant and the residual are reduced. 

 

 Fig. 25.     Residuals: a5 corrected. Fig. 26.     Residuals: up to c6, d6 corrected. 

  

Fig. 27.     Residuals: up to c12, d12 corrected. 
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The results of this calibration are typical, except for the fact that the CM 

usually fits the distortion better than the OM. All the 16 tangential components are 

below the pixel size, the greatest being the asymmetric d2 and d5 with values of 

−0·77 and −0·68 and mean square value over the photograph of 0·22 and 0·28 

respectively. I recall that the components are so designed that the value of each of 

them equals the greatest value of the distortion due to that component, which is 

reached at the corners of the photograph. The greatest distortions are the Drs, and 

within this the components a2 and a3 account for 99% of the whole distortion. 

The four components are above the pixel size (this is not always the case), 

the least one being a4 with a value of −6·86 and mean square of 1·23. The 

asymmetric radial ones are some of them above, some below the pixel size, and all 

below that limit in their mean square, the overall mean square being exactly one 

pixel. 

Finally the mean square of the residuals after the inclusion of the components 

up to c6, d6 is 0·34 px and after the inclusion of all the components is 0·24 px. 

This same value is achieved if the whole ts and the components d7–d12 are 

omitted, and the graph of the residuals is almost the same as with all the 

components included. Such a good fitting of the model to the camera distortion 

with just 20 components was not expected, and this proved to be always the case. 

The grid model 

In view of the previous discussion, in case there is few data there seems to be 

no room for the division of the image in a rectangular grid and the computation of 

several parameters for each of them, making a total of 40 or more. As an example 

of conclusion 2 above, a flight with three strips, 45 photographs in all, GPS 

and INS data and a total of 561 measures over the photographs, when self-

calibrated including the s and asymmetric components up to c6 and d6, appears to 

have very clear asymmetric components, like d2 with a value of 25·4 (microns) 

and a precision for this computed value of 1·1, and similarly for d1, d4 and c4, all 

of them with values above 10 microns. The pixel size was 12 microns. The 

observation of this same pattern in other flights, the smaller the flight the greater 

the distortions, and the fact that they never appear when calibrating a single image 

with hundreds of observations or self-calibrating a block with thousands of 

photographs, means that these are not actual distortions but the modelling of the 

actual measuring errors by the components of distortion. The only reliable values 

in these small flights are the ones of the symmetric components (if the flight is 

very small, only a2). 

A grid model will exaggerate this effect. It will have no consequences in the 

computed values of the image orientations, but the fact that what would otherwise 

appear as residuals is absorbed by the distortion parameters will result in an 

artificially low value of the computed a posteriori standard deviation. If the image 

has an actual a3 (say) component, and this is not removed prior to the application 

of the grid, statistical tests performed on the parameters will conclude that they are 

significant, and that is the truth since they are describing an actual distortion, but 

all the components will be describing the behaviour of the single a3 component 

within its rectangle in addition to local measuring errors. 
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In case there are thousands of measured points the parameters of the grid 

model will very likely be right, but the same distortion which this model describes 

with, let us suppose, 50 parameters, can be described with fewer overall 

parameters, very likely with just 20 as the previous test of 16 000 observations and 

similar ones have shown. Note that in the previous test after the computation of 

20 components the standard deviation of the residuals was already at 0·24 px. 

The problem behind the grid model is not that the concept be wrong, but that 

it cannot be applied to the geometric calibration of one-piece images. The 

irregularities of the distortion are very small with respect to the pixel size to allow 

a meaningful division of the same in several areas. We may look at other cases 

when a function over a surface is described with increasing precision by the 

progressive addition of components. When compressing an image by means of the 

Fourier inversion, the image is divided in small squares, but still the irregularity of 

the function, i.e. the image, within each square is usually much greater than that of 

a camera's distortion function over the whole image. And when the Geoid is 

described, local models are developed indeed, but scientist have computed 

thousands of global parameters of the orthogonal basis and continue to do so. 
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