
Here the exact expression for the integrals of a power of r times the wheight function is

developed. Let first b and c denote the sides of the rectangle, so normalized that
√

b2 + c2 = 1.
By integration by parts and a change of variable it is found that

In =

∫

1

0

rnp(r) =
cn+2

n + 2

∫

coshn+1 t dt+
bn+2

n+ 2

∫

coshn+1 t dt

The lower limits in the integrals at the right hand side of the equation are both zero and

the upper ones the values y such that cosh y = 1

c
and 1

b
respectively. These values are log 1+b

c

and log 1+c

b
, and the values of sinh y are b

c
and c

b
.

For n = 0 the result is
∫

p =

∫

ds = S = bc.

The integral of coshn+1 can be found by developping the power (et + e−t)n+1, which

avoids integration by parts, or by iterated integration of coshn+1, coshn−1, coshn−3, etc. The
expressions arising are different for even and odd n.

By taking the later approach it is found, for n even,

(n+ 1)(n+ 2)In
bc

= 2 +
n

n− 1
(b2 + c2) +

n(n− 2)

(n− 1)(n− 3)
(b4 + c4) + · · ·

+
n(n− 2) ··· 4 · 2

(n− 1)(n− 3) ··· 3 · 1
(bn + cn)

(1)

Taking into account that b2 + c2 = 1 we have

bn + cn = bn−2 + cn−2
− (bc)2(bn−4 + cn−4). (2)

Applying this recursively from the last term of (1) backwards that expression is reduced to

(n + 1)(n+ 2)In
bc

= (n+ 2)− (bc)2
n(n− 2)

(n− 1)

{

(n− 4) ··· 2

(n− 3) ··· 3
(bn−4 + cn−4)

+
(n− 4) ··· 4

(n− 3) ··· 5
(bn−6 + cn−6) + · · ·+

(n− 4)

(n− 3)
(b2 + c2) + 2

}

Applying (2) again:

(n+ 1)(n+ 2)In
bc

= (n + 2)− (bc)2
n(n− 2)

(n− 1)

{

(n + 2)

3

−
(bc)2

3

(n− 4)(n− 6)

n− 3

{

(n− 8) ··· 2

(n− 5) ··· 5
(bn−8 + cn−8) +

(n− 8) ··· 4

(n− 5) ··· 7
(bn−10 + cn−10)

+ · · ·+
(n− 8)

(n− 5)
(b2 + c2) + 2

}}



or which is the same

(n+ 1)In
bc

= 1−
n(n− 2)

3(n− 1)
(bc)2

+
1

n + 2

n(n− 2)(n− 4)(n− 6)

3(n− 1)(n− 3)
(bc)4

{

(n− 8) ··· 2

(n− 5) ··· 5
(bn−8 + cn−8)

+ · · ·+
(n− 8)

(n− 5)
(b2 + c2) + 2

}

This process may be continued as it can easily be seen. The series of fractions within the
brakets will be of the form

a1 =
2 · 4 · 6 ···

r(r + 2)(r + 4) ···
, a2 =

4 · 6 ···

(r + 2)(r + 4) ···
, etc.

When the sums a1 + a2, a1 + a2 + a3, etc. are taken the result of each of them is the next
fraction in the series with the smallest factor of its denominator replaced by r. The sum of
all the fractions will therefore be

(n− (2r − 2))

r
+ 2 =

n + 2

r
.

The (n + 2) term cancels out with the one outside the brackets. The remaining partial
sumations, which multiply (bc)2, will all include the factors (n− (2r− 2))(n− 2r)/(n− r)r,
which together with (bc)2 itself are extracted out of the brackets, and the process continues.

The final formula for the integral is

In
bc

=
1

n + 1
−

n(n− 2)

3(n+ 1)(n− 1)
(bc)2 +

n(n− 2)(n− 4)(n− 6)

5¡(n+ 1)(n− 1)(n− 3)
(bc)4

−
n(n− 2)(n− 4)(n− 6)(n− 8)(n− 10)

7¡(n + 1)(n− 1)(n− 3)(n− 5)
(bc)6 + · · ·

(3)

where r¡ means 1·3·5 ··· r.

For odd values of n let C =
1

b
log

1 + b

c
and B =

1

c
log

1 + c

b
. The integration yields

(n+ 1)(n+ 2)In
bc

= 2 +
n

n− 1
(b2 + c2) +

n(n− 2)

(n− 1)(n− 3)
(b4 + c4) + · · ·

+
n(n− 2) ··· 3

(n− 1)(n− 3) ··· 2
(bn−1 + cn−1) +

n(n− 2) ··· 3

(n− 1)(n− 3) ··· 2
(cn+1C + bn+1B)

(1′)

which cannot be simplified like the formula for even n.
The first values of

∫

rnp(r)/bc are

n In / bc

2 1/3

4 1/5− 8/45(bc)2

6 1/7− 8/35(bc)2

n In / bc

1 1/3 + 1/6(c2C + b2B)

3 7/40 + 3/40(c4C + b4B)

5 1/336
(

41− 30(bc)2 + 15(c6C + b6B)
)



Instead of computing the coefficients for different ratios b/c and taking an average it
is easier and not worse to take the coefficients for a particular ratio. I have chosen to take
the ratio 8/7 for the p polinomials and 3/2 for the q polinomials, for these are the simple
ratios that yield the values of the coefficients of the second polinomials 3,−2 and 4,−3
respectively, up to two decimal places (and in the first case up to three indeed). These are
the definitive polinomials. To the right of each polinomial the quadratic mean value of it is
shown, computed for a photograph with the side ratio 4/3 (but, as was noted, the values
vary little for other ratios):

r 0.58

3r2 −2r 0.28

9r3 −11.4r2 +3.4r 0.17

29.2r4 −53.1r3 +30.1r2−5.2r 0.13

95.8r5 −225.4r4 +187.1r3 −63.9r2 +7.4r 0.096

320.3r6−922.1r5 +1004.9r4−511.4r3 +119.2r2−9.9r 0.077

r2 0.40

4r3 −3r2 0.22

14.5r4 −20.3r3 +6.8r2 0.14

53.5r5−107.8r4 +69.5r3−14.2r2 0.10

197.5r6−511.4r5 +476.9r4−188.2r3 +26.2r2 0.082

And here are the polynomials for weighted odd components, computed for a ratio b/c

equal to
√

3/1, for which the coefficients of the second polynomial of the series p are exactly
2,−1 and those of the second polynomial of the series q are 2.5,−1.5. To the right of each
polinomial the quadratic mean value of it is shown, computed for a photograph with the side
ratio

√

3/1:

r 0.58

2r3 −r 0.26

4.8r5 −4.7r3 +0.9r 0.14

12.8r7 −19.1r5 +8.2r3−0.9r 0.093

38.4r9−76.2r7 +50.5r5−12.6r3 +0.9r 0.069

119.5r11
−296.7r9 +268r7−106.5r5 +17.6r3−0.9r 0.055

r2 0.41

2.5r4−1.5r2 0.20

6.4r6 −7.2r4 +1.8r2 0.11

19.1r8−31.6r6 +15.7r4−2.2s2 0.080

60.4r10
−131r8 +97.8r6−28.9r4 +2.7r2 0.061

The expressions for I
n
/bc when n is even are rational. More exactly, if (bc)2 is a rational

number the value of I
n
/bc will be a rational number too. Therefore, the coefficients of the



polynomials are given by linear equations in which the coefficients are rationals, and are
therefore themselves rational. But the expressions get very complicated soon. For a ratio b/c

equal to
√

3/1, the value of (bc)2 is 3/16 and the values of the integrals are:

n : 0 2 4 6 8 10 12 14 16 18 20

I
n
/bc : 1 1

3

1

6

1

10

209

3150

65

1386

971

28028

227

8580

89

4290

2021

121550

579347

42678636

The exact polynomials p1, p2, p3, q1, q2 and q3 would be

r, 2r3 − 1r, 105

22
r5 − 103

22
r3 + 10

11
r, r2, 5

2
r4 − 3

2
r2, 28875

4486
r6 − 32235

4486
r4 + 7846

4486
r2

but for p4 and q4 the denominators are already 36 590 794 and 3 458 217 302.


