
Proposal for C

Array Notation for Vectorization
Javier A. Múgica

January 28th , 2025

This extension was suggested to the author
by M. Uecker, from whom I received valuable
suggestions in the early stages of the design

1

TABLE OF CONTENTS

1 INTRODUCTION
Intent of the feature
Prior art
Intent of the proposal
Relation to other proposals

2 SELECTIONS [B:L], [B:L:S], [:] AND [::]
Semantics of range selection
Singleton
Continuous subarray selection
The type after lvalue conversion
Broken arrays. Long and short interpretations
The type of A[B:L] for nonconstant L
The selection [::]
Stepped selections
s equal to zero
The kind of expressions allowed for B, L and s
General rule for binary operators

3 BROKEN ARRAYS
Array subscripting applied to an array with

selection
Array subscripting when the first dimension

is broken
Margins
Pointer to one of its elements; valid offsets
Meaning of broken in the long interpretation
Meaning of broken in the short interpretation

4 RELATIONAL OPERATORS AND EMPTY SELEC-
TIONS

Equality operators
0-dimensional selection
Relational operators
The equivalence of matrix without or with 0-

dim. selection

5 RESTRICTIONS ON ARRAYS WITH SELECTION
Inconvertibility to pointer
Restrictions for broken arrays before lvalue

conversion
sizeof
& operator
typeof
_Lengthof
Other Restrictions
Macros, selection forgetting and lvalue con-

version

6 CASTS
Restrictions
Changing the singleton type (I)
Redimensioning cast
Changing the singleton type (II)
The selection after the cast

7 ASSIGNMENTS
Assigning an array
Assigning into an array
Overlapping in assignment

8 OTHER
The decaying of arrays to pointers
Literal 0 promoted to pointer
Mixing arrays with selection and arrays

which decay to pointers
Arrays with selections of different depth
On modifiable lvalues

9 COMPLEXITY OF IMPLEMENTATION
Graded complexity of array selections
What would be mandatory
How range selections might be translated

10 INDEXED AND DIRECT SELECTIONS
An array with selection as the index
The kinds of matrices allowed as indices
An array without selection, sometimes
An array without selection, always
The type of the selection
As left operand in an assignment
Singleton or not
Margins
Direct selection
Constant range expressions
The different kinds of array selections
The feature test macros for indexed and di-

rect selections
Comma-separated list
Example of use of indexed selection

11 OUR FINAL CHOICE FOR THE TYPE
Ignored elements are not padding
Selection from an array of pointers
Broken vs. potentially broken
Consequences for implementations

12 FURTHER EXTENSIONS

2

A[B:-L]
Range selection constraint related recom-

mended practice
Relaxing the UB of overlapping in assignments
Relaxing the restriction for overlapping
A[B:L][B’:L’] when the elements of A[B:L] are

pointers
typeof, sizeof, _Unselect() and _Value()
Functions taking and returning arrays
Functions acting as range operators
Address to broken arrays. The broken qualifier

13 FURTHER EDITORIAL FIXES
6.5.16 Conditional operator
6.5.17 Assignment operators
6.5.17 Assignment operators (again)

14 WORDING
6.2.5 Types
6.3.3.1 Lvalues, arrays, and function desig-

nators

6.5 Expressions
6.5.2 Arrays with selection as operators
6.5.4 Postfix operators
6.5.5 Unary operators
6.5.6 Cast operators
6.5.7 Multiplicative operators
6.5.8 Additive operators
6.5.9 Bitwise shift operators
6.5.10 Relational operators
6.5.11 Equality operators
6.5.12 Bitwise AND operator
6.5.13 Bitwise exclusive OR operator
6.5.14 Bitwise inclusive OR operator
6.5.17 Conditional operator
6.5.18 Assignment operators

6.7.3.6 typeof specifiers
6.7.3.6 Typeof specifiers
6.7.7.3 Array declarators
6.10.10.4 Conditional feature macros

3

1 INTRODUCTION

Intent of the feature
The idea of the proposed extension is to be able to write code like

A[0:5] += 2;
A[:] = B[:]*C[0][:];
A[:][0:6] += A[:][6:6];
A[b:n] = -B[0:n];
A[0:5:2] = 1/A[0:5:2]; // Operate on the elements 0, 2, 4, 6, 8

On the one hand, this makes code more synthetic and easier to read than forforfor loops. On
the other, it helps the compiler in taking advantage of vector instructions present in the
processor and, more generally, deciding which is the best way to transform that construc-
tion into machine code.

It also opens up the door for functions taking arrays as arguments. This is possible be-
cause we have chosen arrays with selected elements not to decay to pointers. This is ex-
plored in “Further extensions”.

Prior art
The specification of a range in the index or a comma-separated list of values is common in
many languages. Some languages specify begin and end instead of begin and length. In C,
the former seems preferable, because the types of A[0:5] and A[n:5], where n is of in-
teger type, should be the same, namely typeoftypeoftypeof(A[0])[5]. This is not possible if the latter
is written A[n:n+5].

Intent of the proposal
In a first step of the design we only defined continuous selections, and only one-dimen-
sional. Stepped selections and multidimensional selections are a natural extension. This
leads to a more complicated proposal. Not only the needed changes to the standard become
longer, but the consideration of contrived examples grows considerably. Any design has to
take into consideration any possible combination. These are thoroughly discussed here. In
several cases the conclusion is that no extra wording is needed, but the study of the partic-
ular case is necessary nonetheless.

After these kinds of selections we considered the ones we call indexed selections and
direct selections, which need yet further wording and consideration of cases. For these two
we do not propose a concrete wording, though they are analysed to a point that brings
them near wording.

Small implementations are reluctant to adopt complex features, and there is already a
not so short list of optional features: variable length arrays, complex numbers, decimal
floating numbers, atomics, threads, to which may be added recent additions to the lan-
guage that some implementations do not plan to support in the foreseeable future. Some
prefer to keep the language small and avoid any complex features, whether made optional
or not. But at the same time implementations cannot be stopped (and should not be) from

4

providing extensions, and it is good for the programming community if the way these ex-
tension are provided is standardised. For this reason we believe that the full set of features
with respect to empty selection and range selections should be put in a standard form.
Other features analysed in this paper go too far afield. We also believe that implementa-
tions should not be forced to implement the most complex combinations, or range selec-
tions at all.

We don’t intend the wording proposed here to be voted for inclusion in the standard
now. Implementation experience is obviously needed. But implementations are reluctant to
include new features; once a feature is included it can never be removed (except for com-
pilers targeting a very specific market). Another reason is that the way an extension is
provided by the implementation may be different to the way it is finally adopted in the lan-
guage. This makes implementations especially reluctant in regard to extensions that are
likely to be incorporated to the standard.

Therefore, an actual wording is desirable. The committee should express its intent in
adopting the feature in some concrete from, the one proposed here or another one, but a
concrete one, so that implementations can embark in the task of implementing it with the
assurance that they are implementing the design that will be adopted by the standard. In
doing this they may detect issues with the proposed wording that need adjustment, and the
wording eventually comes to a final form. This way implementers see that they guide the
shaping of the final wording, not that the final wording makes their implementation in-
compatible with the standard.

Another reason for developing the feature in full is that the analysis of more complic-
ated cases helps in the design of the simpler ones. A gradual specification of the feature,
where a first proposal just addresses the simplest cases ignoring any possible extension,
may lead to wrong decisions in the design, that reveal themselves wrong only when the
feature is extended and that it is by then too late to change.

This document, therefore, may serve as a basis for a technical specification or simply
for a proposal available from the project page, to which the committee has expressed its
approval but the wording of which may not yet be in final form and bears no normative
power.

Once implementations begin implementing this, as we hope, the adoption into the word-
ing of the standard may be done progressively, incorporating first single-dimensional, con-
tinuous (i.e., no step) selections, for example. Since the feature is likely to remain optional
it may go into an annex (except empty selections).

Another feature that can be incorporated easily is the empty selection: A[], which es-
sentially serves to suppress conversion to pointer of the matrix. We don’t intend this to be
optional. The adoption of empty selections make very easy the introduction of functions
that can take arrays as arguments, which may be the next addition in this line.

Relation to other proposals
Range operations on arrays lead naturally to an empty selection for selecting the matrix as
a whole and to matrices not decaying to pointers. The syntax that arises naturally for this
should be taken into consideration by others thinking of a way of avoiding arrays decaying
to pointer in some contexts; for instance, for functions taking arrays.

The proposal of fixing the order of evaluation in operations like A+B has to consider
very carefully its implications for range operations, where one obvious translation consists
in first evaluating all the expressions needed for determining all the ranges that appear in
the expression (e.g., in an assignment expression), in our notation, B,L,s, then translate
the range operation as a sequence of individual operations, as though it were a forforfor loop.

The terminology with respect to the number of elements and size of an array has to be
very precise. We use the following terms: length to mean the number of elements. Total

5

length is the product of the length of the array times the length of its elements and so
forth; that is, the total length of an array is its length if its elements are not of array type,
the product of its length times the total length of its elements otherwise. Variable length ar-
ray, with its usual meaning, even though the term corresponding to that meaning should
be variable size array. Its opposite is array of known constant size. Since there do not exist
singletons (the term singleton is introduced soon in the proposal) of variable size, known
constant size coincides with known constant total length. This latter term is used only once,
at a point where it is important to emphasize that the text refers to the total number of ele-
ments, not the size. The opposite of this term should be variable length array, had not this
term the meaning it has. If the length of the array is known (i.e., given by an integer con-
stant expression), it is an array of known constant length; otherwise it is a top-level vari-
able length array. We also use the term fixed length as a synonym of known constant
length, but not in the wording.

2 SELECTIONS [B:L], [B:L:S], [:] AND [::]

Semantics of range selection
Consider the code

A[0:5] += 2;
A[:] = B[:]*C[0][:];
A[:][0:6] += A[:][6:6];

If A is an array A[B:L] denotes, or selects, the subarray of L elements A[B] ... A[B + L-1]
and A[:] selects the whole array. Each of the selected elements is operated. In the second
example A, B and C[0] have the same number of elements. In the third, for each A[i], to
the first six elements the next six are added: A[i][j]+=A[i][j+6], for all i and for 0≤j≤5.

In expressions where one of the operands is not an array with selection, that operand
should be evaluated only once. Thus, in

intintint i=2;
A[0:5] = i++;

All five elements in A[0:5] are assigned the value~2 and after the expression is evaluated
i equals 3.

The semantics for arrays with selections in just one dimension is for the most part easy
with a unique obvious choice. Multidimensional selections, however, give rise to many situ-
ations which need careful decisions and wording. One of this is the combination of selec-
tions with the array subscripting operator, [k].

Singleton
Before anything else, we introduce the concept of singleton. For a time it appeared that we
could get along with the expression “element of non-array type”, but in the end it proved
impossible in practice. As way of example, this document contains well over one hundred
uses of the term. The definition we provide for it is as follows:

An object or value which is not of array type is called a singleton. If the element type

6

of an array is not an array type, the elements of the array are its singletons. If the
element type is an array type, the singletons of the array are those of its elements.

Note that this excludes the type voidvoidvoid.

Continuous subarray selection
If A is an array we’d like A[B:L] to denote the subarray of L elements A[B] ... A[B + L-1].
It seems this should be an array of L elements; that is, it should have that type. Also, A[:]
should denote the whole array, i. e., the same object as A.

This poses a problem for multidimensional arrays: we’d like, e. g., A[0:4][0:3] to de-
note a bidimensional array, or rather a selection thereof, not the first three elements
within A[0:4]. But if A[0:4] is to be an array just like A, differing only possibly in the
number of elements, how can that be achieved? It is necessary that A[0:4], in addition to
its type, carries some property with it that can distinguish it from an array of four ele-
ments of the same type. We will say that A[B:L] or A[:] have elements selected, or that
they are arrays with selection, or that they carry a selection, which a “plain” array does
not.

Thus, after a declaration of the type

intintint A[10];

A[0:3] has type “array of three int”. In addition, it has its three elements selected, which
the expression A does not.

This makes possible to select the next dimension if there is one:

intintint A[4][5];
intintint B[10][5];
A[0:3];
B[0:4][0:3];

Here both A and B[0:4] have type “array of four array of five int”, but A does not carry a
selection of elements while B[0:4] does. For this reason

A[0:3]

denotes an array of three elements of type “array of five int”, which makes 15 elements,
while

B[0:4][0:5]

denotes an array of four elements, also of type “array of five int”. The former has its three
elements selected, which are of type “array of five int” while the latter has twelve ele-
ments selected in a 4 x 3 array, which have type “int”.

The rule is that, in an expression of the form

A[B:L] or A[:],

if A does not carry a selection the operand selects elements from the first (outermost) di-
mension of A, of type that of A[0], while if it does already have selected elements it selects
elements from each of the already selected elements: in the expression A[B:L], for each s
selected in A, the elements s[B:L] are selected.

So, if A is an array of n dimensions, its selection, if any, will have the form of an l-di-

7

mensional array of m-dimensional arrays, and l+m = n. The number of, necessarily consec-
utive, dimensions carrying selection might be called the depth of the selection.

We do not allow further selections applied to an array carrying a selection whose ele-
ments are pointers. See “Further extension” for a discussion.

The type after lvalue conversion
When working with arrays with selections it is soon realised that what matters for an op-
eration between two of them to be possible is just the number elements selected from each
dimension, not which particular elements are selected not even how many elements the
full array has. For example:

intintint A[24][8][3], B[6][8][10];
A[0:6:2][0:4][:] + B[:][2:4][7:3];

But then we can completely discard the non-selected elements and make the type of the ar-
rays with selections in this example be intintint[6][4][3]. There is no concern here about the
memory layout of the array after lvalue conversion, since the result of such a conversion is
just a value, not an object.

This is not possible for l-values:

intintint A[18][8][3], B[6][8][10];
A[0:6:2][0:4][:] = B[:][2:4][7:3];

Here it is precisely the elements A[0:0:0], ... A[10][3][2] which need have their values
updated.

Broken arrays. Long and short interpretations
We said above that A[:] or A[B:L] are arrays like A, differing possibly in the second case
in the number of elements. Let us consider the case A[B:L] when A is itself of the form
C[:] or C[B:L], as in the following example:

intintint A[10][5];
A[2:4][0:3];

The layout of A[2:4][0:3] is as follows, where s denotes an element that has been selec-
ted and will be operated and i an element which will be ignored:

s, s, s, i, i, s, s, s, i, i, s, s, s, i, i, s, s, s, i, i

The twelve elements which constitute the selection, the ones which will be operated (e.g.
as A[2:4][0:3]*=2), are not stored consecutively. We will call one such selection, which
is like an array with padding, a broken array; and each dimension with a selection in which
not all the elements are selected, we will call a broken dimension. We may assign to
A[2:4][0:3] type intintint[4][3], or intintint[4][5]. Both options have advantages and draw-
backs. The former choice will be called the short interpretation, while the latter will be
called the long interpretation. There is also the possibility of assigning it a new type.

New type

These broken arrays made us think for a moment to enlarge the type system for them,

8

based on the principle that one of the characteristics of a type is the layout of its elements.
Thus, each broken array would be akin to a structure, broken arrays differing in the num-
ber of elements in each dimension or the selected elements from each of these being of dif-
ferent type. For example, A[:][0:2] and A[:][2:2] would be of different types. Apart
from the enlargement of the type system, that we prefer to avoid, this choice presents an-
other problem: what would be the type of A[:][0:2] + A[:][2:2] ? This latter is readily
solved by the way we specify lvalue conversions of arrays with selections. We still prefer
not to enlarge the type system for arrays with selections.

Long interpretation

We cannot naïvely assign A[2:4][0:3] above type intintint[4][3], since the memory layout of
the object is not that of an intintint[4][3]. It is that of an intintint[10][5], with some elements se-
lected, others ignored. With this interpretation, each broken array has a corresponding full
array, which is the array from which it is a selection, with no selection.

This choice poses a dilemma when the range [B:L] is selected from the outermost di-
mension of a declared array A. For symmetry with inner dimensions we would say that
A[B:L] is a broken array, but this contradicts what said at the onset of the Continuous
subarray selection section about the type we want for A[B:L] and leads to some unexpec-
ted semantics, as in

intintint A[10];
sizeofsizeofsizeof A[0:1]; //Would equal 10*sizeofsizeofsizeof(int)

Furthermore, the selection [B:L] may be applied to a pointer, in which case the result
must necessarily be an array of L elements.

For these reasons we prefer to let the type of A[B:L], when A is an array which does
not carry a selection, be that of the sliced down array; i.e., the same as that of A except
possibly for the number of elements:

intintint A[10][5];
A[2:4]; //Same type as intintint[4][5]. All its four elements A[i] are selected.
A[2:4][0:3]; //The type is intintint[4][5]. The selection is a broken array.
A[2:4][:]; //The type is intintint[4][5]. All its 20 elements A[i][j] are selected.

All three objects in the example have the same size; namely, that of an intintint[4][5].
The main drawback of the long interpretation is that the type of a broken array

changes upon lvalue conversion. Thus, A[2:4][0:3] is an intintint[4][5] before lvalue conver-
sion and an intintint[4][3] after it. This makes the use of broken arrays dangerous as oper-
ands to sizeofsizeofsizeof, typeoftypeoftypeof and other places.

Short interpretation

As already pointed, we cannot just say that the type of A[2:4][0:3] is intintint[4][3]. Yet,
that would make the type of that array the same before and after lvalue conversion. The
solution is to attach to it a qualifier. Thus, A[2:4][0:3] is not a “plain” intintint[4][3] but a
broken intintint[4][3]. Brokenness is a qualification the array carries, as could be its being
atomic. The register storage class achieves a similar effect: the memory layout may be dif-
ferent from that of an object without that storage class. Contrary to a type declared with a
qualifier, the type of the object is the same. We will discuss at the end of the analysis, just
before the wording, whether we want broken arrays in the short interpretation to be
atomic-like (qualifier) or register-like (storage class).

The type of the arrays considered above is now

9

intintint A[10][5];
A[2:4]; //Same type as intintint[4][5]
A[2:4][0:3]; //The type is intintint[4][broken 3]
A[2:4][:]; //The type is intintint[4][5]

The word broken is not a keyword proposed, just a symbolic way of representing the type
of broken arrays in the short interpretation.

Here there is no doubt that the type of A[B:L] is intintint[L]. It is not broken because it is
not broken in the literal sense; i.e., its elements are not spread out.

In the short interpretation, whenever a dimension carries a selection, all the elements
of the array which carries the selection are selected; the elements of the original array that
were not selected do not form part of the array after selection.

The choice taken

In the end we chose the short interpretation. All this document considers both the long
and short interpretations. This is for one reason: in order to assess the two options the im-
plications for the different operands have to be analysed in detail. The long interpretation
presents more nuances than the short one, which is more straightforward. It presents, for
instance, the dichotomy of margins or not margins (to be explained later), the interpreta-
tion of array subscripting, etc. After pondering the drawbacks of both interpretations, we
choose the short one. The proposed wording, accordingly, is for the short interpretation.

The type of A[B:L] for nonconstant L

A variable length array

If L is not a constant expression a fixed length array could be turned into a variable length
array, and vice-versa:

intintint n = 4;
intintint A[10], B[n];
A[0:n]; //Variable length array
B[1:2]; //Array of known constant size

We should consider with respect to this problem what should be the semantics when A
is a pointer, not an array, as in

voidvoidvoid mult_array(floatfloatfloat *A, floatfloatfloat *B, floatfloatfloat *C, intintint n){
A[0:n] = B[0:n] * C[0:n];

}

It seems difficult to make A[0:n] have a type other than variable length array of length n.
All this leads us to let the type of A[B:L] when A does not carry a selection be

typeoftypeoftypeof(A[0])[L].
When A does carry a selection, the type is be given by the length of A in the long inter-

pretation; i.e., it is the same as that of A, while in the short interpretation it is always
typeoftypeoftypeof(A[0])[L], and may or may not be broken.

Mandatory VLA

Consider

10

A[0:n] /= 2;

It seems that an implementation should support this even if it does not support variable
length arrays. A closer thinking reveals that the equivalent to A[0:n] is not an object de-
clared as a variable length array but a forforfor loop. The translator need not handle any
memory allocation.

C23 does not require support for VLA of automatic storage duration. We also have from
the standard that An lvalue is an expression (with an object type other than voidvoidvoid) that po-
tentially designates an object; So, A[0:n] is an lvalue and designates an object which may
have (and will typically have) automatic storage duration and is a VLA. We want support
for these mandatory.

The wording for making these mandatory should be in the text explaining the meaning
of the __STDC_NO_VLA____STDC_NO_VLA____STDC_NO_VLA__ macro, which states what is not mandatory. Then, the wording
for the latter can take an include approach or an exclude approach. On the one hand, it
may state precisely which VLAs are not mandatory. These would be henceforth the objects
with automatic storage duration declared as VLA. On the other it may rule out which ones
are not mandatory.

First approach:

__STDC_NO_VLA__ __STDC_NO_VLA__ __STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation
does not support the declaration of variable length arrays with automatic storage duration.

Second approach:

__STDC_NO_VLA__ __STDC_NO_VLA__ __STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation
does not support variable length arrays with automatic storage duration which are not part
of an object of known constant size.

The second approach is more conceptual, focusing on the reason why those which arise
from a range selection should be mandatory, not mentioning specifically range selections.
If there were other instances in the language of those, they should be mandatory. But given
that there are no other instances, the first wording makes it easier for a reader to know ex-
actly what support for VLA is not mandatory. Therefore, we took the first approach.

The selection [::]
Consider the following code:

intintint A[3][3], B[3][3], C[3][3];
A[:][:] = B[:][:]+C[:][:];

It may seem more natural to write

A[:] = B[:]+C[:];

A “partial selection”, in which there are not as many [:] or [B:L] as possible seems of
very limited use. For this reason it was considered to make a [:] selection operate on all
the dimensions, except that if selections [B:L] follow, these refer to the innermost dimen-
sions and the [:] would apply to the remaining ones. There should not be more than one
[:] in a series of consecutive selection operators.

However, others may prefer not to have a special rule for [:]. Furthermore, for the op-
erators == and != these partial selections are useful.

Both sensibilities can be reconciled by devising a different syntax for the selection of

11

the whole matrix. We chose [::] for it:

A[::] = B[::]+C[::];

For a time we relegated this to “future extensions”, but it proved so useful when working
with multidimensional arrays that we included it in the main proposal. We found ourselves
using it in, e.g.,

C[::] = (A[::] == B[::]);

This has the advantage that the programmer need not care about the number of dimen-
sions of the matrices involved. The above statement is written the same way whether A, B
and C are unidimensional, bidimensional, etc. Of course, the dimensions of the three
matrices must match. This can be very useful for macros.

Also, it expresses intent better than

C[:] = (A[:] == B[:]);

Here, the reader of this code cannot know just by looking at it if the comparison is car-
ried at the level of the singletons or if the matrices are multidimensional and the compar-
ison is between vectors or matrices (see below the discussion for the == operator).

As noted above, we make [::] select all dimensions up to the following [:], [B:L]
and [B:L:s] selections if present (see the wording).

Stepped selections

We want also to allow “stepped” selections: A[0:5:2], which selects the elements A[0],
A[2], A[4], A[6], A[8]. Or A[0:n:2], which would select A[0], ... A[2(n-1)]. The third
integer in the selection is the step, which can positive, negative, or zero with some restric-
tions, and need not be an integer constant expression.

All we have discussed applies to stepped selections, with one exception; in particular,
lvalue conversion transforms a stepped selection into a continuous array. The exception is
a stepped selection as the first, outermost one. This creates from the outset an array with
its first dimension broken.

Long interpretation
If A is an array which does not carry a selection, s is an ICE and either s is zero or L is an
ICE (or both)

A[B:L:s] has type int[s*(L-1)+1] (for s≥0).

The choice s*L is also natural, each selected element being followed by s-1 padding
elements. But this is not possible for cases like intintint A[7]; A[0:3:3], where the last se-
lected element is also the last element in the array. Nor is it possible if s is zero. If s is neg-
ative, it is its absolute value which is taken.

Both interpretations
Needless to say, if s is negative it is the highest element which is operated first:

A[2:3:-1]= B[0:3]; // A[2]=B[0], A[1]=B[1], A[0]=B[2]

A[8:3:-3]
lvalue conv.

 {A[8],A[5],A[2]}

12

s equal to zero
s might evaluate to zero. If the array with selection undergoes lvalue conversion, L copies
of the element A[B] will fill the array. In the long interpretation, an array of one element
results if [B:L:0] is the outermost selection. In the short interpretation the resulting ar-
ray always has L elements, even if they will share the same location in memory.

Finally, s cannot be zero if the array is the left operand of an assignment:

A[n:10:0]+=1; // Not allowed

In the proposed wording, instead of saying “if s evaluates to zero the array shall not be
the left operand of an assignment operator” we write “an array which carries a stepped se-
lection where the step is zero shall not be the left operand of an assignment operator”.
This is to make unambiguous that the following is valid:

A[6:10:0][2]= 2.0; // Equivalent to A[6]= 2.0.

It also makes valid, according to the precise definition of stepped selection that will be
given, an s equal to zero provided L is one:

A[6:1:0]= 2.0; // Valid. Equivalent to A[6]= 2.0.

Long interpretation
If the element type of A is intintint (or A is a pointer to intintint), A[B:L:0]has type intintint[1] with no
ignored elements. It is not a broken array.

A corner case arises if A[B:L:s] is an array of known constant size, s is an ICE which
evaluates to zero, L is not an ICE and A[B:L:s] undergoes lvalue conversion. Before lvalue
conversion the array has size 1 and is therefore of known constant size. After the conver-
sion it has L elements, hence is not of known constant size. This is the only case where
lvalue conversion changes an array of known constant size into a VLA. We think this is not
problematic since the translator will handle the array after conversion in either of two
ways:

— It copies the selected values in a temporary object in memory, the amount of copies
is not known at translation time. This happens already (in this proposal) for any array
with selection which is not of known constant size.

— The elements are operated with some other element or the elements of another ar-
ray with selection; these operations are translated as a forforfor loop. Then, the fact that s is
zero is irrelevant: each iteration of the forforfor loop reads the required value, be it always
the same or not. We do not allow constructions where the repeated element would be
the destination of writing operations.

It would be problematic for unary operators, as in A[0:L:0]++. But here the problem
arises independent of L not being a constant expression. It is the one just treated above,
which is solved by not allowing stepped selections where s is zero as the left operand of an
assignment operator.
lvalue conversion of an array with a stepped selection where s is zero and l is not one con-
stitutes an exception, in that the array after lvalue conversion has more elements than be-
fore; in any other situation is has the same or less elements.

Short interpretation
Now the type of A[B:L:0] is intintint[l], even before lvalue conversion. If l is ≠1, its layout is
very different from a plain intintint[l]; its l elements share the same space in memory. For this
reason its type has to be qualified somehow. We could say that it is collapsed, but we

13

prefer to reuse the broken qualifier for this. Thus, boken does not necessarily mean spread
out, but having a layout different from the unqualified array; typically because its elements
are spread out, but can also be the opposite: different elements sharing the same space in
memory.

The kind of expressions allowed for B, L and s
We believe it should not be more than conditional-expression. As regards side effects, our
opinion alternated between prohibiting them and allowing them. Side effects would com-
plicate the translation and be a source of bugs, as in A[n:n++]=0 or A[0:b[0]=3] +
b[0:3]. On the other side, these constructions have parallells in what can currently be
done:

n= n++; (b[0]=3) + b[0]

As for the complication in the translation, the translator must evaluate B, L and s before
translating the range operation proper, so side effects take place naturally at that point. Fi-
nally, there are use cases that seem natural, as

A[0:n++]= x; A[k:3] = B[f(k):3];

So in the end we allow them.
Conditional expressions cause no ambiguity in the interpretation of :. Parentheses can

ease readability: A[(b ? 0:n) : n].

General rule for binary operators
Whenever an expression is of the form A[R]... op B[R’]... , for most operators op, where
[R] and [R’] are range selections other than [::], the number of selected elements in [R]
and [R’] have to be the same, call it n, and the expression is equivalent to

A[i][]... op B[i][]..., 0≤ i <n

The presence of the empty [] will be explained in “0-dimensional selection”, and prevents
the array to its left to decay to a pointer. and A[i] and B[i] run through the selected ele-
ments. If a range selection is [::] is first replaced by the equivalent series of [:], then the
rule is applied. For example,

intintint A[6][6], B[6][6];
A[::] + B[::]; // A[0][:]=B[0][:], etc.
A[:] == B[:]; // A[0]==B[0], etc., but A[0], B[0] are not converted to pointers

The operators of this form which are excluded from this rule are the logical ‘and’ and
‘or’ operators and the comma operator.

The application of the rule gives a way to pull the vector operation to an outer dimen-
sion in one of the operands, as in this example:

floatfloatfloat A[k], B[m][k], C[k][n];
A[:] = B[3][:]*C[:][4];

The rule applies to B[3] and C giving B[3][i]*C[i][4], instead of, say, B[i][:]*C[i][:].

14

3 BROKEN ARRAYS

Array subscripting applied to an array with selection
Consider the following:

intintint A[9][6];
A[5:4][0];
A[5:4][1:2][0];

The following appealing interpretation, in which the [k] operand applies to each of the se-
lected elements:

A[5:4][0]; // {A[5][0], i, i, i, A[6][0], i, ... A[8][0]}
A[5:4][1:2][0]; //Wrong, there are not three dimensions

is at odds with the definition of the [k] operation as selecting the k-th element of the ob-
ject to its left. A[5:4][0] should be A[5]. This means that for the [k] operator the array
of selected objects should not be treated as a range of objects (to be explained below). The
semantics of the above examples should be:

A[5:4]; // {A[5][0], ... A[5][5], A[6][0], ... A[8][5]}
A[5:4][0]; // A[5] = {A[5][0], A[5][1], ... A[5][5]}
A[5:4][1:2][0] // {i, A[5][1], A[5][2], i, i, i}

If the user wants to select the 0-th element from each selected array, he should write

A[5:4][0:1];

In the last example A[5:4][1:2][0] is a unidimensional array, yet that dimension is
broken in the long interpretation. This cannot happen as a result of selecting elements
from an array with [B:L] or [:] selections, the first dimension is never broken in those
cases; nor is it in the short interpretation, where A[5:4][1:2] has type intintint[4][2], hence
A[5:4][1:2][0] has type intintint[2]. We consider below in the section “Margins” another
possibility for A[5:4][1:2][0] in the long interpretation.

Array subscripting when the first dimension is broken
Long interpretation
Consider the following examples:

intintint A[9][6];
A[0:3:2][1]; // A[1] or A[2]?
A[5][1:2]; // Array of type intintint[2]: {A[5][1], A[5][2]}
A[5:4][1:2][0]; // {i, A[5][1], A[5][2], i, i, i}
A[5:4][1:2][0][1]; // A[5][1] or A[5][2]?
A[5:4][1:2][0][0]; // Wrong, it would be A[5][0], which is amongst the ignored

elements? Or A[5][1]?

We said that A[5:4][1:2][0] has type intintint[6]. So, a further [0] should refer to its

15

first element. Alternatively, we may posit that the array subscripting applied to an array
with a selection operates on the selected elements. That would break the equivalence
between [0] and *, unless the action of * is also redefined. We do not consider the latter
possible: the address of and object should be that of its first byte. On the other hand, the
very way in which the selection [B:L] is defined points towards an index in [k] being
counted from the first selected elements. Considering this, three options are possible:

Forbid the [k] operator on arrays where the first dimension is broken.
The index in [k] counts from B and steps s. * selects the first element.
The index in [k] counts from B and steps s. * is forbidden on arrays with selection.

We finally went for the third option. * operates on pointers, while the purpose of a se-
lection in an array is to denote the array itself (restricted to the selected elements), a
range of elements on which an operand will operate; it cannot be a pointer.

Short interpretation
Now the situation is simpler because the broken array only carries with it the selected ele-
ments. We could even allow *, but we prefer not to allow it, for the reason just expressed.

Margins
All this section appertains only to the long interpretation, except when otherwise noted.

A broken outermost dimension can arise because of two reasons. One is a stepped se-
lection, the other the combination of range selection and array subscripting:

intintint A[20][6], n;
A[5:4:3];
A[9:4:n];
A[5:4][1:2][0];

This latter only generates a broken outermost dimension in the long interpretation.

Mixing of range selection and subscripting

Consider this case first. A[5:4][1:2] is composed of four pieces:

{i, A[5][1], A[5][2], i, i, i} {i, A[6][1], A[6][2], i, i, i}
{i, A[7][1], A[7][2], i, i, i} {i, A[8][1], A[8][2], i, i, i}

so it seems the most natural that A[5:4][1:2][0] should be the first of these pieces. This
results in unselected elements at the ends (margins).

These margins can be eliminated in the obvious way: letting A[5:4][1:2][0] be

{A[5][1], A[5][2]}

This goes against the most basic rules of arrays. First, an array should be the composition
of its elements. Secondly, its number of elements should be sizeofsizeofsizeof(A[5:4][1:2])/
sizeofsizeofsizeof(A[5:4][1:2][0]). It has the advantage that the following two expressions are
equivalent:

A[5:4][1:2][0] A[5][1:2]

Some drawbacks of this interpretation disappear if we think of the operation [0] not as se-

16

lecting the 0-th element of the array with selection to its left, but as the selected elements
therein. Thus, [k], when applied to an array carrying a selection, selects the selected ele-
ments from the array’s k-th element if these elements are of array type and carry a selec-
tion, or the k-th element if they are singletons or arrays which do not carry a selection.
This way A[5:4][1:2] is still the juxtaposition of its four elements and each of them has a
size of 5*sizeofsizeofsizeof(intintint).

With this interpretation we have sizeofsizeofsizeof(A[5:4][1:2][0]) = 2*sizeofsizeofsizeof(intintint) be-
cause [0] does not select the whole element. (But we are not allowing sizeofsizeofsizeof on arrays
which carry a broken selection).

Another advantage of this interpretation is that typeoftypeoftypeof(A[5:4][1:2][0]) is intintint[2],
which is the more natural choice given that A[5:4][1:2][0] has only two elements that
can be addressed with no holes in-between; namely, [0] and [1] (But we are not allowing
typeoftypeoftypeof here either).

It has the drawback that [k] does not select the array’s k-th element. We may think of

A[R][R’]...[k][k’]...

where [R], [R’], ... are range selections, of which only the first one need be present, b is
the first element in the selection R and [k], [k’], ... are array subscriptings of which only
the first one need be present, as a longhand for

A[b+k][R’]...[k’]...,

except that if [R] is [::] it is first replaced by the equivalent number of [:] selections.
But this still leaves one uneasy.

Stepped selections

In this case there will be holes between the selected elements, if the step is >1 or <-1, but
there will not be empty margins. For example, the layout of A[5:4:3] is

{s, i, i, s, i, i, s, i, i, s},

where i stands for “ignored” and s for “selected”.

Long interpretation
The layout of A[10:4:s] if s≠0 is

{s, i.(s-1), s, i.(s-1), s, i.(s-1), s}

where i.(s-1) means s-1 ignored elements (If s=0 the layout is {s}). But, which s among
these four is A[10]? The first one or the last one? In the long interpretation it depends on
whether s is positive or negative.

This seemed at first problematic. An object should have a well-defined address and pro-
ceed forward in memory. A variable length array can lead to a similar situation, as in

intintint A[3][n];

where the address of A[1] is (intintint*)A+n. But in this case the translator knows that the ob-
ject A[1] starts behind of A and that its first element is A[1][0].
This made us consider the following design for the long interpretation: In a stepped selec-
tion where the step is not an ICE the expression (the stepped selection) consists of all the
elements of the array. For example, in the selection A[10:4:s], with s not an ICE and sup-
posing it evaluates to -3 when evaluated, the layout would be:

17

{i, s, i, i, s, i, i, s, i, i, s, i, i, i, i, i, i, i, i, i, i}

This way the translator always knows the size and address of the array with stepped selec-
tion.

Another consequence of this design is that if A has pointer type and s is negative it has
to be given by an ICE. Or as it would be written: If A has pointer type and s is not an in-
teger constant expression s shall not be negative. So that in A[B:L:s] the translator can
know that the selection will span the positions

from B to B + (L-1)*s

We can form the expression B + (s<0)*(L-1)*s that gives unconditionally the lowest ad-
dress element of the selection, but the compiler cannot know whether this lies ahead of
A+B or behind, contrary to VLA, where it always knows it lies behind.

But since B itself may not be an ICE it turns out that stepped selections with a negative
step are no more complicated than selections without step can be, as regards the size and
the position of the lowest address selected element:

A[B:L:s]
A[B’:L’] as in A[B+(s<0)*(L-1)*s : 1+(L-1)*abs(s)]

Since in the second case we let A[B’:L’] span only the selection, from B’ to B’ + L’-1,
there is not reason in A[B:L:s] not to do the same. Indeed, it seems we should do the
same.

Therefore, a selection A[B:L:s] will always be as follows: It span from A + b +
(s<0)*(l-1)*s to A + b + (s<0)*(l-1)*s + (l-1)*|s| = A + b + (s>0)*(l-1)*s. And there is no re-
striction on s when A is of pointer type.

Short interpretation
The layout of A[10:4:s] can be represented as {s, ? , s, ? , s, ?, s} and A[10] is always the
first s. In a selection A[B:L:s], its first element is the one at A + b; its last element, the
one at A + b + (l-1)*s, whether s be positive or negative.

Both interpretations

All the above applies before lvalue conversion. After lvalue conversion the array has the
l elements in order, and there is nothing to say about its memory layout, for it is, conceptu-
ally, just a value.

Both constructions

(This continues to apply only to the long interpretation)
In order to assess the different options (margins or not margins) we have to ask

ourselves when does the difference matter. If the expression is undergoing lvalue conver-
sion the distinction is irrelevant. If it is the left operand of an assignment, the type given to
it is also irrelevant (and the expression itself undergoes lvalue conversion). It turns out
that the contexts where it matters have been excluded in this proposal: sizeofsizeofsizeof, typeoftypeoftypeof,
taking its address, decaying to pointer. Another situation, what element is selected by the
[k] array subscripting, has been settled by making the index count only selected elements,
irrespective of brokenness: margins and holes.

Whatever the criterion chosen it has to be uniform. We envisage three possibilities
with respect to A[R], where A is a pointer or an array not carrying a selection:

— Never trim margins. The type of A[R] is always that of A
— Trim margins if the selection is given by ICEs, keep them if there is even one not-ICE

18

— Always drop margins. A[R] spans from the first to the last of the selected elements

For B[k], where B carries a multidimensional selection, we see three possibilities, in
partial correspondence with the previous ones:

— Never trim margins. The type of B[k] is the element type of B
— Trim margins if the selection is given by ICEs, keep them if there is even one not-ICE
— Always drop margins. B[k] spans from the first to the last of the selected elements

The option chosen for B[k] has to be ≤ the option chosen for A[R]. For example, if the
second option is chosen for A[R] only the first or second options can be chosen for B[k].

Giving A[R] the same type as A when the latter is a pointer is strange. We finally chose
the third option with respect to A, as explained above for stepped selections. While it may
require run-time computations, the situations where they are needed would happen sel-
dom, this is already the situation for VLA, and precisely in those contexts, and the optional-
ity provided via the macros __STDC_ARRSEL___STDC_ARRSEL___STDC_ARRSEL_ allows an implementation not to handle
those cases at all if it so wishes.

As for B[k], we finally chose that it be the whole k-th selected element of B, including
margins if there are. This is the most coherent; margins will be dropped at lvalue conver-
sion, together with all other unselected elements, and it does not affect the meaning of a
subsequent [k], which will always be the k-th selected element in B[0].

We have therefore made up a decision for the long interpretation. For the short inter-
pretation, which we finally take, the situation is much simpler.

Pointer to one of its elements; valid offsets
We forbid taking the address of an array with (nonempty) selection. But the address of one
of its elements may be taken and the user can make use of that pointer to access elements
from the array:

intintint A[10], B[6][6];
intintint *p= &A[0:4:3][0];
intintint *q= &B[:][0:3][0][0];

As with any other pointer to an array element, this pointer can only be used to access ele-
ments from the array it was extracted from, not from any larger array of which the former
array is a subarray:

p[0]=0, p[3]=1; // Valid
p[1]=2; p[0]=p[4]; // Invalid (U.B.)
q[2]=q[1]=q[0]=4; // Valid
q[4]=0; // Invalid

This allow the compiler to reason about elements not modified by the pointer:

intintint A[6][3], B[6][6];
intintint *q= &B[:][0:3][0][0];
// Operations using q
A[:][:] = B[:][3:3];

In the code above the compiler can reason that no access through q modifies the upper
three elements of each B[i], and advance the reading of those elements, needed for the last
instruction (e.g., if the whole instruction is placed before in the generated code).

19

A pointer taken from an array carrying a step-zero selection will modify all the ele-
ments when modifying one of them. But this has not importance; those arrays are not al-
lowed as the left operands of an assignment, and when undergoing lvalue conversion, the
meaning for the translator is just “take element at b, l times”:

intintint A[6], B[6];
intintint *q= &A[3:6:0]; // q is &A[3]
q[0]=5; // Modifies A[3]
q[1]=1; // Invalid
B[:] = A[3:6:0]; // Could have been written more clearly as B[:]=A[3].

The element of which the address is taken can itself be an array, but not an array with
selection:

intintint A[6][6];
intintint (*p)[6]= &A[0:4:3][0];
p= &A[:][:][0]; // Invalid: address of an array with selection

Meaning of broken in the long interpretation
The meaning is clear: the array has less elements selected than elements has. With this
definition, the concept of broken dimention is precise. For example:

intintint A[6][6], B[6];
A[:][3:3];
B[6:6:-1];

The matrix A[:][3:3] has its first dimension full (unbroken) and its second dimension
broken. B[6:6:-1] is not broken; B[2:l:0] is, for any l.

Meaning of broken in the short interpretation
Here the property of being broken acts as a qualifier, meaning that the layout is different
than that of a plain array. Therefore, B[6:6:-1] as above has to be considered broken, as
well as intintint C[1]; C[0:l:1], for any l greater than one.

Consider now the selection on the matrix A in

intintint A[6][6];
A[:][3:3];

Each of the elements A[0]... A[5] is an array of three elements, of type intintint[3], which is
not broken (and which carries a selection in its first and only dimension). The matrix A in
A[:] is also not broken, yet A[:][3:3] is broken. We cannot say that its second dimension
is broken since the elements A[i] are not broken. We might say that its first dimension is
broken, for A[1] does not come right after A[0]. But since the selection in the first dimen-
sion is [:], what does it mean in the short interpretation to say that a dimension is
broken?

In the short interpretation, identifying which dimensions are broken in a broken array
ceases to be meaningful; the array is broken as a whole. Not beimg broken means that the
elemtns are sotred one after the other, with no wholes. But if the elements are broken ar-
rays, whose elements are spread out in memory, what does it mean to say that they are

20

stored one after the other? A broken array hasn’t got a well defined address and extent in
memory, in general. Hence, once an element of array type is broken, the array of which it
is an element is broken as a whole. Therefore, being broken implies being broken in the
first dimension, which is to say that the dimensions which are broken add not meaning
beyond being broken: In the long interpretation it is possible that a broken array is broken
in its second dimension but not in the first one; in the short intepretation, not.

Hence, in the short interpretation, if an array A is broken, then A, A[0], A[0][0]... are
broken, till one element B is reached which is not (which may be the singleton), thence no
elements is broken: B[0], B[0][0], etc.

4 RELATIONAL OPERATORS AND EMPTY SELECTIONS

Equality operators
What should A[:] == B[:] yield? From the point of view of the == operator it should eval-
uate to true if all elements are equal. From the point of view of a range operation it should
yield an array of 0’s and 1’s. It will eventually become unavoidable to provide syntax for
the two options. If either or the other choice is taken for the equality operator, it seems
that another operator would be necessary for the other.

Let us analyse the range operator point of view:

intintint A[3][3], B[3][3], C[3][3], D[3], E;
C[:][:] = (A[:][:] == B[:][:]);
D[:] = (A[:] == B[:]);
E = A op B;

Making == operate as any other operator on the range of selected values lets the pro-
grammer choose at what level the comparison is carried: At each singleton level, resulting,
in the example, in a 3×3 matrix; at the level of the next to last dimension, comparing vec-
tors, the result being true if all components are equal, yielding the value assigned to D in
the example, which is equivalent to

D[0] = A[0][0]==B[0][0] && A[0][1]==B[0][1] && A[0][2]==B[0][2];
D[1] = A[1][0]==B[1][0] && A[1][1]==B[1][1] && A[1][2]==B[1][2];
D[2] = A[2][0]==B[2][0] && A[2][1]==B[2][1] && A[2][2]==B[2][2];

And there is one obvious possibility missing: comparing all the elements yielding a
single value, assigned to E in the example. There is no need for a new operator, just syntax
for selecting a 0-dimensional selection.

Therefore, the right choice is to treat == and != as any other binary operator and oper-
ate on the selected elements. There is no need for the duplication of all comparison operat-
ors.

We define A != B to be !(A == B). Here, the result of A == B is a matrix with all its ele-
ments selected, and ! negates each of them. For example, with A and B as above,

A[:] != B[:] is equivalent to !(A[:] == B[:])

A[:] == B[:] yields an array of three elements with all its elements selected, and the !
operator negates each of them. That is, the result is equivalent to

21

[0] = !(A[0][0]==B[0][0] && A[0][1]==B[0][1] && A[0][2]==B[0][2])
[1] = !(A[1][0]==B[1][0] && A[1][1]==B[1][1] && A[1][2]==B[1][2])
[2] = !(A[2][0]==B[2][0] && A[2][1]==B[2][1] && A[2][2]==B[2][2])

0-dimensional selection
After the declaration intintint A[3][3] we have the following possibilities with respect to the
dimensions of the selection (its depth) and that of the selected elements, to which we add
now the last entry:

Selection
Dim. of selection Dim. of selected elems.

A[:][:] 2 0
A[:] 1 1
A[] 0 2

The last option selects the matrix as a whole. It has one selected element, which is a
3×3 matrix. This is the formal explanation. In practice for the programmer it means that
the matrix is treated as a whole, for instance for the == and != operators, and that it does
not decay to a pointer, the latter formally because it carries a selection. An empty selection
is a selection of depth zero.

Once we have settled onto providing some way to perform a 0-dim. selection, a syntax
has to be chosen for it. We considered two options:

[A] A[]

None of them presents incompatibilities or ambiguities with the current uses of the []
operator. The first one, since for its use as array subscripting an expression must precede
it, while in the construction [A] here, an expression cannot precede it. For the second one,
an empty [] is only allowed in declarators, and even there only in some places.

The second one is in keeping with the syntax of the other range selections. On the other
hand, the semantics of a zero dimensional selection is essentially to avoid the matrix de-
caying to a pointer. It has no effect when applied to a matrix that already carries a selec-
tion:

A[0:5][][:] is equivalent to A[0:5][:]

And it wouldn’t be needed for the == operator if its operands did not decay to pointers.
With this view, the syntax [A] conveys the idea that the brackets protect the matrix; then
we could say that a protected matrix is never converted to a pointer. It also becomes
clearer that this matrix-protection operator has no effect on an array with selection, which
cannot already decay to a pointer:

[A[0:5]] is equivalent to A[0:5]

If the protection of a matrix is part of the replacement text of a macro, this may lead to
the occurrence of two consecutive [tokens: [[A]], which has the syntax of an attribute.
This can be solved by defining the macro as

#define#define#define protect(a) [(a)]

The other obvious choice, [a], is not possible because of the decision of C of interpreting
[[not as one token but us the succession of two tokens. C++ already has a similar problem
with the << operator, whereby nested templates need a dividing space between two consec-

22

utive <.
A more important reason strikes a death blow on this syntax: An array within brackets

may be needed, and will very likely be in some implementation providing the extension, for
specifying an arbitrary sequence of indices to be selected:

unsigned intunsigned intunsigned int I[3] = {0,4,3};
floatfloatfloat B[3], A[10];
B[:] += A[I];

Strictly speaking, this does not rule out the [A] syntax for a zero selection, since in one
case the operator must be preceded by an expression of array or pointer type and in the
other case it cannot, but using the same syntax for two different operations with the same
possible type for the operand is a very bad choice if it can be avoided.

Therefore, without any doubt the A[] syntax should be preferred over the [A] one.

Relational operators
The relational operators are <, >, <= and >=. When a relational operator is applied to an ar-
ray with selection we mandate that the selected elements be singletons. This excludes the
analogous of A[:] == B[:] or A[] == B[] in the examples above. While it is clear that
two vectors or matrices should compare equal only if all elements compare equal, it is by
no means clear that A should be < B if all elements of A are less than all corresponding ele-
ments of B. Furthermore, this would make < and > not the opposite of >= and <= respect-
ively.

That semantics can be achieved with the current proposal, though an intermediate vari-
able is needed:

C[:][:] = (A[:][:] < B[:][:]);
(C[] == 1)

The equivalence of matrix without or with 0-dim. selection
We saw that an empty [] selection is sometimes needed for preventing the matrix to decay
to a pointer (we recall, we called this to protect the matrix). Both:

E[] = D[]; and E = D[];

are possible and have the same meaning, but

E[] = D; and E = D;

are not, because D decays to a pointer.
For passing the matrix as argument to a function, in the event that function arguments

are extended to allow arrays, the 0-selection is the most natural syntax;

doubledoubledouble determinant3(doubledoubledouble A[:3][3]);

determinant3(Α[]); determinant3(A[:]);
determinant3(A[:][:]); determinant3(A[::]);

All four calls are equivalent since the selection is lost (in our design) when the matrix is

23

passed as argument to function, but it seems to us that the first one is the more natural
one.

It is also the most natural option when we want the type of a matrix to be that of a de-
clared identifier:

autoautoauto a = Α[]; auto auto auto a = Α[:]; autoautoauto a = Α[::];

Again, all three forms are equivalent, but it seems that the first one conveys meaning bet-
ter, since the selection is irrelevant.

In the three examples the [] operator has no other function than to protect the matrix,
and this is also the case when used for the operands of the == and != operators, though
here there is a parallel with matrices carrying “smaller” selections.

We’d like that to be the general case; that is, there should be no semantic difference
between a matrix which does not decay to a pointer and a matrix with a zero selection. If
we want to preserve this in the current proposal we may need to allow matrices with 0-di-
mensional selection in places where we will preclude matrices with selection. This will be
treated in the next section. It turns out there is only one such situation:

&A[]

(arbitrary arrays with selections will be excluded from other places, but arrays containing
very simple selections will not). Arrays with selection will be precluded from these places
because a different semantics may be wanted in the future for arrays with selected ele-
ments and specifically for broken arrays. There is no problem therefore in allowing arrays
with zero dimensional selections there. It should be noted that this does not make a selec-
tion like A[B:L][] allowed as operand for those operators, which would completely break
our decision of not to allow arrays with selections there:

intintint A[5][5];
&Α[]; &Α[0][]; //Allowed
&&&Α[0:1][]; //Not allowed

This agrees with our specification that a [] selection applied to an array which already car-
ries a selection has no effect.

5 RESTRICTIONS ON ARRAYS WITH SELECTION

Inconvertibility to pointer
The section on array subscripting suggested that an array with a selection should not be
convertible to a pointer. Far from being a defect we see this as an advantage, for it opens
the door to functions taking an array as an argument. it could be like this:

intintint sum_points(intintint points[:6]);
doubledoubledouble determinant4(doubledoubledouble A[:4][4]);

intintint mainmainmain(voidvoidvoid){
intintint s, points[6];
doubledoubledouble x, A[4][4];

24

x = determinant4(A[]);
returnreturnreturn sum_points(points[]);

}

Restrictions for broken arrays before lvalue conversion
The discussion on margins showed that it is better to exclude an array with selection in the
long interpretation where the difference between one and the other choice (to keep mar-
gins or to drop them) would be made observable. It is also not a good idea to allow arrays
with the first dimension broken where the semantics is different whether the array is
trimmed or not (i.e., after and before lvalue conversion). In some situations it is only a
broken first dimension that matters. The type and layout of an array before lvalue conver-
sion is needed in particular in these contexts:

typeof operators

sizeof

& operator

sizeof

intintint B[10][10];
sizeofsizeofsizeof(B[2:3]); // sizeofsizeofsizeof(intintint[3][10])
Long interpretation
sizeofsizeofsizeof(B[:][0:5]) // = sizeofsizeofsizeof(B)
sizeofsizeofsizeof(B[2:3][0:5][0]) // sizeofsizeofsizeof(intintint[10])
Short interpretation
sizeofsizeofsizeof(B[:][0:5]) // sizeofsizeofsizeof(intintint[10][5])
sizeofsizeofsizeof(B[2:3][0:5][0]) // sizeofsizeofsizeof(intintint[5])

However, in the long interpretation sizeofsizeofsizeof would yield a different result after lvalue
conversion, agreeing with the values of the short interpretation.

Long interpretation
The operand of sizeofsizeofsizeof does not undergo lvalue conversion (6.3.2.1), but the dichotomy
seems us worth enough to exclude broken arrays from the sizeofsizeofsizeof operand:

sizeofsizeofsizeof(B[2:3][0:5]) // sizeofsizeofsizeof(intintint[3][10])
sizeofsizeofsizeof(+B[2:3][0:5]) // sizeofsizeofsizeof(intintint[3][5])

Not all unbroken arrays should be allowed, though: there is a problem when either the
length of the array or the expression L used for the selection is not an ICE. For example:

intintint A[2][n], B[2][5];
sizeofsizeofsizeof(A[:][0:3]); sizeof; sizeof; sizeof(B[:][0:n]); sizeof sizeof sizeof(B[0][0:n]);

Whether the three arguments to sizeofsizeofsizeof are unbroken or broken depends on the value of n.
The problem does not arise if the selection is [:].

To avoid this, the range selections in the array should be restricted to [0:L] with L an

25

integer constant expression or [:], and in the first case, if not the outermost selection,
that the array on which the selection is operating be a fixed length array. But if [0:L] is
not the outermost selection the user can and should simply omit the selection. Since allow-
ing those selections would complicate the wording for sizeofsizeofsizeof for little gain if at all, we do
not allow such not-outermost selections.

The text on the allowed arrays with selection as operands of sizeofsizeofsizeof finally would read
(in case the long interpretation had been chosen):

If its operand is an lvalue and is an array carrying a selection, it shall be of the form
A[R]E where A is not an array with a nonempty selection, [R] is a range selection of a form
other than [B:L:s], and E is empty or a succession of range selections of the forms [], [:]
or [::].

Note that the selections [], [:] or [::] which follow [R] can be ignored by the translator;
they do not affect the result of the sizeofsizeofsizeof operator. Also, we had to take care not to ex-
clude arrays with selection which have already undergone lvalue conversion.

This wording excludes a selection like B[:][0:5][0] with B as above, which is an ar-
ray carrying a one-dimensional, unbroken selection. Allowing an array subscripting expres-
sion which results in an array with selection complicates the wording, again for little or no
gain. The user should simply write in this case B[0][0:5], which is always allowed as the
operand to sizeofsizeofsizeof, whether B[0] has length 5 or more.

If the sizeofsizeofsizeof is part of the replacement text of a macro, that macro cannot control the
way the argument is passed to it. For example, it cannot preclude B[:][0:5][0] in place
of B[0][0:5]. But in macros even more that directly in the code, calling sizeofsizeofsizeof on its ar-
gument is more dangerous, because of the dependence on the lvalue conversion, for ex-
ample

sizeofsizeofsizeof(A[:][0:3]) vs. sizeofsizeofsizeof(+A[:][0:3])

and because the array passed to the macro may or may not be broken.
If a writer of a macro wants to apply sizeofsizeofsizeof to its argument whatever it be, what is

needed is a mechanism for making an array forget its selection. For example

sizeofsizeofsizeof(_Unselect_Unselect_Unselect(x))

But it may be that it is the size after lvalue conversion what the macro wants. See the sec-
tion “typeof, sizeof, _Unselect() and _Value()” in “Further extensions”.

Short interpretation
The value “returned” by the sizeof sizeof sizeof operator is the same before and after lvalue conver-
sion. We allow arrays with selection as operands to sizeofsizeofsizeof unconditionally. The size of
A[B:L] and A[B:L:s] is always l*sizeofsizeofsizeof(A[0]), where l is the value to which L evalu-
ates.

If s is zero, the size in memory is sizeofsizeofsizeof(A[0]), not l*sizeofsizeofsizeof(A[0]). We prefer to
keep the value which sizeofsizeofsizeof yields as l*sizeofsizeofsizeof(A[0]). This means that for these arrays
sizeofsizeofsizeof does no return the number of bytes the object takes in memory. But returning this
latter value would constitute an exception to the rule l*sizeofsizeofsizeof(A[0]), i.e., _Lengthof_Lengthof_Lengthof(A)
*sizeofsizeofsizeof(A[0]); and this would bring in many problems: The value given by sizeofsizeofsizeof
would not be the size needed to store the value in some other object; sizeofsizeofsizeof(A[B:L:s])
would no longer be an ICE whenever L is, but both s and L need be integer constant expres-
sions, and sizeofsizeofsizeof would not return the same value for all objects of type T[l].

26

& operator
Long interpretation
In a first version we chose the resulting expression to be a pointer to the full array, the se-
lection being forgotten. This is because the purpose of selecting elements is to perform a
range operation, which is not the case if the &&& operator is applied to the array with selec-
tion:

intintint A[10], B[10][8];
&A[3:5] // intintint (*)[5], points to A[3]
&B[:][0:2]; // intintint (*)[10][8]
&B[5:5][0:2]; // intintint (*)[5][8], points to B[5]
&B[5:5][0:2][0]; // intintint (*)[8], points to B[5]

We think it could be interesting to allow the addressof operator to construct a pointer
that can address the selected multi-dimensional subarray. So as not to close this possibility
for the future, we disallow the &&& operator.

Short interpretation
A pointer to a broken array addresses an object with a different memory layout as a
pointer to a plain array. Therefore, it must carry the broken qualifier; i.e., it is a pointer to
a broken array. This is consistent with the way qualifiers work.

The pointer needs to remember the memory layout of the array it points to; i.e., the ex-
act way the array is broken. This memory of the layout is copied with the value:

intintint B[10][8], C[6][4];
intintint (*p)[5][brokenbrokenbroken 2], (*q)[5][brokenbrokenbroken 2];
typeoftypeoftypeof(p) p2; typeoftypeoftypeof(q) q2;
p= &B[0:5][0:2];
q= &C[0:5][0:2];
&p[1][0] - &p[0][0]; // 8
&q[1][0] - &q[0][0]; // 4
p=q;
&p[1][0] - &p[0][0]; // 4

Thus, allowing the &&& operator on broken arrays would require the enlargement of the
type system; brokenness would no longer be an ephemeral property of some arrays with
selection with no impact in practice on the programmer or even on implementers. And con-
sider for instance function parameters: A parameter declared as intintint (*p)[brokenbrokenbroken 2]
does not determine the layout of *p. The compiler would need at runtime the hidden data
carried with a broken pointer in order to compute the address of (*p)[1].

This is more than the present proposal intends. Therefore, we disallow the &&& operator.

typeof
Long interpretation
In the first place we restrict to operand to typeoftypeoftypeof in the same way as the operand to
sizeofsizeofsizeof so as not to close the door for a future change in the meaning of typeoftypeoftypeof for broken
arrays (which exist only before lvalue conversion) and to avoid a result that may depend
on choices that may change (e.g., margins): typeoftypeoftypeof(x[2:6:2][0:5]) y;

27

In typeoftypeoftypeof, in addition, it may be decided in the future that its result remembers the se-
lection. This is almost as making arrays with selection a different type than the full array.
This is not the semantics of the long interpretation, where we want broken arrays to have
the same type as the corresponding full array and let the semantics of the selection be
taken care of by the concept of “carrying a selection”. If it were remembered, it should
then be ignored in contexts where it cannot apply, as in a declaration:

typeoftypeoftypeof(x[:][0:5]) y;

But what to use typeoftypeoftypeof for if not a declaration or the type of a compound literal? For a
cast. A cast is applied to a value, not to an lvalue, so here arrays with selection that change
their number of elements after lvalue conversion are even more inadequate in typeoftypeoftypeof than
in, say, sizeofsizeofsizeof:

(typeoftypeoftypeof(A[0:n:2])) A[0:n:2]; //Different types

Furthermore, if the programmer wants to recover the selection, this can easily be done
because the result of a cast is not an lvalue (hence, it consist of only the elements that had
been selected), by applying [:] or [::]:

(typeoftypeoftypeof(+A[:][0:5]) A[:][0:5])[::]
f(n, ((typeoftypeoftypeof(y[0:n])) y[0:n])[:])

So in the end we decided to allow the operand to the typeof operators in the same cases
as it is allowed for the sizeofsizeofsizeof operator, and the result is the type of the expression with
no selection.

Another reason for preventing for the time being the application of typeof to an array
carrying a broken selection is that it may be to the type after lvalue conversion that it is
more useful to apply the operand. That cannot be achieved by applying a trick for enforcing
lvalue conversion:

#define#define#define typeofl(x) typeoftypeoftypeof(+(x))
typeofl(x[:][0:5]) y;

for it will also apply integer promotions and is only possible if the selected elements are
singletons of arithmetic type.

Short interpretation
Since we do not want to extend the type system we should not allow typeoftypeoftypeof on broken ar-
rays, or if allowed the broken pseudo-qualifier should be dropped. This will make typeoftypeoftypeof
inconsistent in the event that brokenbrokenbroken is fully integrated into the type system, allowing
pointers to broken objects to be declared and constructed. For this reason we could allow
typeoftypeoftypeof in the same cases as sizeofsizeofsizeof is allowed in the long interpretation; namely, un-
broken arrays that are known to be unbroken during the translation of the expression (i.e.,
the brokenness or not of which only depends on ICEs). But we prefer the simpler specifica-
tion that no array with nonempty selection is allowed as operand to typeoftypeoftypeof.

typeof_unqualtypeof_unqualtypeof_unqual is allowed on any array with selection, be it broken or not.

_Lengthof
Long interpretation
The restriction for the operand would be similar to that of sizeofsizeofsizeof. However, here it is only
the outermost dimension which matters.

28

Furthermore, the question arises of what we want _Lengthof_Lengthof_Lengthof to yield: the total length
or the number of selected elements. This alternative arises in the long interpretation; in
the short interpretation the only possibility is the number of selected elements, for in that
case it is also the total number of elements. This possibility of two results in the long inter-
pretation is not the same situation as in sizeofsizeofsizeof. Here it is clear that we want the total
size; the reason not to allow a broken operand in sizeofsizeofsizeof is that that size will change upon
lvalue conversion and that it is not clear what the user wants. He may be calling sizeofsizeofsizeof
passing a broken selection and expect the operand to give him the size of the selection, not
counting unselected elements. If, for _Lengthof_Lengthof_Lengthof, we settle on the number of selected ele-
ments, no restriction would apply to its operand.

To return the number of selected elements is our preferred option. An lvalue is short
lived, and we see no possible use of the length of it including the unselected elements. Fur-
thermore, with this interpretation it is possible to use _Lengthof_Lengthof_Lengthof on an operand whose
outermost dimension was some inner dimension but has been exposed to the outermost
one as a result of array subscripting, without the result depending on whether margins are
retained or not when array subscripting is applied. It is also the sensible choice for multidi-
mensional indexed or direct selections, to be explored below.

Therefore, for this operator, we resolve to let it return, in the long interpretation, the
number of selected elements of the outermost dimension (i.e., of elements of the array
proper), whence no restriction applies to its operand.

Since we insist in making A[] always equivalent to A, _Lengthof_Lengthof_Lengthof(A[]) should return
the same as _Lengthof_Lengthof_Lengthof(A) and not 1, which seems and ad hoc exception. But it is not:
_Lengthof_Lengthof_Lengthof returns the number of selected elements from the first dimension, or the num-
ber of all of them if there is no selection there. And indeed A[] carries no selection in the
first dimension. If it were so, a further selection A[][B:L] would select from the second
dimension, which it does not.

We may say that A[] carries a selection in its 0-th dimension, if we start counting di-
mensions from one. This dimension has a single element, which is the whole matrix. As
with any element, its elements run along those of the next dimension. Thus, the elements
of A[0][0], which is an element form A’s second dimension, vary along A’s third dimen-
sion; those of A[0] run along A’s second dimension, and those of A[], which are those of A,
run along A’s first dimension.

But we would place a note in the wording pointing out that an array carrying an empty
selection carries no selection in its first dimension, had we chosen the long interpretation.

Short interpretation
Here the number of selected elements equals the total number of elements, and con-
sequently there is no doubt as to what _Lengthof_Lengthof_Lengthof should yield.

Other Restrictions
An array with selection should not be allowed as the argument passed to a function: it can-
not and should not decay to a pointer. In places where the object is needed for its type, an
array with selection is strange: the intent of range selections is to select several elements
from the array, to be operated, not to place the array inside typeoftypeoftypeof(), say. More gener-
ally, whenever the array with selection would be placed in a position where the action
would not be to operate individually on the selected elements, i.e., where it does not act as
a range of objects in our terminology, its use is questionable. We have identified these
places:

Argument to function

_Generic, controlling expression

29

auto, initializer for a type inferred declaration

alignof

[k] operator

unary *

in addition to typeof, sizeof, & and _Lengthof treated above, and casts treated below. Of
these, we have chosen to allow _Generic, auto, [k] and alignof, though the latter case can-
not arise.

_Generic

Since it is the type of the controlling expression which is needed, there seems to be no
reason for selecting elements from the array. This by itself is no reason for forbidding its
use here, but we would do so so as not to make the code depend on broken arrays being of
the same type as the corresponding full array, as is the reason for forbidding them in
typeoftypeoftypeof in the long interpretation.

But the controlling type of a _Generic_Generic_Generic selection is taken from its controlling expres-
sion after lvalue conversion, so this wariness does not apply. Indeed, since arrays with se-
lection do not decay to pointers, they are a way of making the controlling type an array
type, which is not possible with arrays not carrying a selection.

There is no need to any change in the wording for this operand. Arrays with selection
will be allowed there. In the long interpretation their unselected elements are lost after
lvalue conversion; in both interpretation brokenness is lost; in any interpretation the array
type is preserved.

auto

The situation is similar as for _Generic_Generic_Generic: the type is taken from the initializer after lvalue
conversion. Here we are interested in allowing arrays with selection, for it makes sense
that it is the number of selected elements what we are interested in, and because it is the
only way of declaring an identifier with array inferred type:

intintint A[10][6];
autoautoauto p = A; // int(*)[6]
autoautoauto a = A[::]; // int[10][6]
autoautoauto b = A[:]; // int[10][6]
autoautoauto c = A[0:5][3:3]; // int[5][3]

alignof

alignofalignofalignof can only be that of the corresponding full array, and in any case this operator
only takes a type name, not an expression.

[k] operator

The [k] operator presents the ambiguity in the long interpretation of whether to start
counting from the 0-th element of the array or form the first selected one. We have already
argued that the latter choice is the right one.

unary *

This is impossible, since the array with selection should not be convertible to a pointer.

30

Macros, selection forgetting and lvalue conversion
Long interpretation
Many of the cases that needed careful consideration above will not arise in practice. Why
would a programmer write

typeoftypeoftypeof(+A[6:3][0:5]) B;

instead of

typeoftypeoftypeof(A[0][0]) B[3][5];

? The latter has the advantage that integer promotions are avoided. Similarly, if the user
wants the size of A[6:3][0:5] after lvalue conversion, he can just write

3*5*sizeofsizeofsizeof(A[0][0])

And if he wants the size before lvalue conversion he should write sizeofsizeofsizeof(A[6:3]) or
3*sizeofsizeofsizeof(A[0]).

Both interpretations
For plain arrays, typeof, sizeof and _Lengthof are useful because the array may be de-
clared in one place and the operand used in another place where the declaration is not vis-
ible (in the literal sense). An array with selection is used on the spot. Why would someone
write

_Lengthof_Lengthof_Lengthof(A[0:n:3])

? The value is either n.
These situations arise only in macro definitions. For example, to write a macro that se-

lects the first three elements of an array:

#define #define #define invert3(x) (x)[0:3] = 1/(x)[0:3]

If the array x passed to the macro already carries a selection of singletons (e.g.: floatfloatfloat
x[10]; invert3(x[5:5])), the macro will fail. Instead of providing in the language some
operand to forget the selection, the best solution is probably to write the macro as above
and do not pass to it an array with selection in its innermost dimension:

float float float *p, x[10][6];
invert3(p); // O.K.
invert3(x[:]); // O.K.
invert3(x[:][:]); // Wrong

Likewise, if a macro wants to set to zero its argument x:

#define#define#define setzero(x) memset(&(x),sizeofsizeofsizeof(x),0)

it will fail if x is an array carrying a not-outermost selection of type [B:L] or a selection
[B:L:s] anywhere. Far from being a defect, this is a safe behaviour: What would the caller
want in those cases? To set to zero the whole matrix or just the selected elements? If he
wants the whole matrix there is no reason for passing the matrix with a selection to the
macro, except for a selection in the first dimension in case he wants to cut down the mat-
rix; but in this case the macro does work: setzero(A[0:n]). If just the selected elements

31

are wanted, the way to do it is using the range operations!

A[0:n:2]=0;

If the macro knows its argument will be a matrix, using range operations is also the right
way to define it:

#define#define#define setzero(x) (x)[::]=0

This will set to zero only the selected elements of x, if they are singletons, the singletons
from x’s selected elements if they are arrays, or the whole matrix if there is no selection.

Therefore, the cases where a macro cannot attain complete generality with respect to
the type and selection carried by its argument are in the first place very rare (a multidi-
mensional selection need be present, or a user passing an array with a selection that the
macro wants discarded, in which case the users should have simply passed the array with
no selection), and the failure of the macro appears as a safety valve rather than a limita-
tion of the same.

For this reason there does not appear to be a need for the introduction of one operator
for forgetting the selection and another one for forcing lvalue conversion (avoiding, e.g.,
integer promotions). We explore them in “Further extensions”.

6 CASTS

Restrictions
Casts apply to values, not to lvalues. This simplifies the design. In the long interpretation,
we’d like to restrict the cast operand in the same way as the sizeofsizeofsizeof operand, and since ar-
rays with selection which are not lvalues are allowed there without restriction, there is no
restriction in the operand to a cast. Also, there is no need to leave the possibility open for a
pointer type in the cast that would result in a pointer addressing only the selected ele-
ments, as we did for the & operator, since after lvalue conversion all elements are selected,
and even more fundamentally, a value of array type cannot be cast to a pointer to its ad-
dress because it has no address.

At present the type name of a cast cannot specify an array type. This is because it can-
not possibly apply to an array, which would be the only type that could be meaningfully
cast to an array type. An array is allowed as the operand, but it decays to a pointer. As we
now have arrays which do not decay, these should be allowed to be cast to arrays.

Changing the singleton type (I)
The only obvious type a value of array type can be cast to is its own type. A cast changing
the singleton type would also be meaningful:

doubledoubledouble A[4][4];
(floatfloatfloat[4][4]) A[::]

This can be used to prevent warnings from the compiler:

floatfloatfloat A[4][4], B[4][4], C[4][4];

32

A[::] = (floatfloatfloat[4][4])(B[::]+C[::])[::];

The last [::] is there because we want the cast to forget the selection. The reason is
the the cast is to an “array of four arrays of four float”, and there is no selection in that ex-
pression; i.e., in the type written within (). Also, this choice adds flexibility, since the user
can apply any selection he wants to the result of the cast. In particular, the selection before
the cast can be recovered by writing [::] or a series of [:].

At first we didn’t include these casts in the present proposal, because it seems it re-
quires the compiler to make a copy of the object, transforming each of its singletons. Later
on we changed our design. This will be explained soon below.

Redimensioning cast
An array may be cast to an array of the same singleton type and less or equal total size:

floatfloatfloat A[4][4];
(floatfloatfloat[2][4])A[];

This allows a multidimensional array to be treated as a vector, as in the following example
for bidimensional arrays:

#define#define#define len2(x) _Lengthof_Lengthof_Lengthof(x)*_Lengthof_Lengthof_Lengthof((x)[0])
#define #define #define VEC(x) ((typeoftypeoftypeof((x)[0][0])[len2(x)]) (x)[]);

floatfloatfloat A[n][3][k], (*B)[k];
#define#define#define Ã VEC(A)
forforfor(intintint i=0; i<3*n; i++) B[i][:]=i*Ã[i][:];

Note however that the reverse assignments are not possible: the result of a cast is not an
lvalue.

The casts of this type that make more sense are the ones collapsing several dimensions
into one, splitting one dimension into several ones or restricting the outermost length. But
we do not see why other combinations should be prohibited, as long as the size of the tar-
get type is ≤ the size of the operand. The compiler may warn upon conversions that break
the dimension layout:

intintint A[6][6];
(intintint[7][5])A[]; //Possible warning
(intintint[3][12])A[]; //Possible warning
(intintint[15])A[];
(intintint[2][3][6])A[];

Changing the singleton type (II)
Coming back to casts that change the singleton type, consider

A[:] = (floatfloatfloat)B[:];

A programmer writing this expresses the intent that he wants each value of B to be
converted to floatfloatfloat. This per element conversion avoids the copy required by casting the
whole array. For this to be possible we have to make the cast operation a range operation.

33

At first this seemed strange, but considering use cases we realised that not only it is useful
but that it is going to be by far the most common use:

intintint *A;
unsigned intunsigned intunsigned int *s;
A[0:n] += (intintint)s[0:n];

for example.
We therefore changed radically our original design for casts. By making it a range oper-

ation it gains in expressivity, just as the == operator (see below). Unlike for this operator,
we allow the array to which it applies to carry only the two extreme kinds of selection:
either its selected elements are singletons or it carries an empty selection. The intermedi-
ate cases appear of very limited use. In the former case we have the redimensioning cast of
our original design, that now requires the array to which it applies to carry the [] selec-
tion, no other one is valid. In the latter, the type of the cast can be anyone that is allowed
for the singleton. We refer to these two casts as the array cast and the range cast. If inter-
mediate selections were allowed these would be of array type, so that the compiler need
not create a copy of the object and the effect would be to just reinterpret its dimensions.

If B is of type doubledoubledouble[4][4], the type of an expression like

(floatfloatfloat)B[::];

is floatfloatfloat[4][4]. What then, is the advantage from the point of view of the translator with
respect to our first design of (floatfloatfloat[4] [4])B[::]? The advantage is that in this latter
case the selection is forgotten (as we argued above), which result in a plain array of kind
[4][4] for which the compiler may need to reserve space in memory; for instance, selec-
tions can be applied to that array. In the cast (floatfloatfloat)B[::] the result is an array carrying
a selection of singletons. This result will be used in one of the following ways: ignored; in a
place where the value of the singletons is not needed (e.g., in sizeofsizeofsizeof), or as an operand of
a range operation, where each element will be operated at a time (or in groups of four to
take advantage of vector instructions, say), and the compiler knows it can convert the val-
ues one by one as they are being operated. Hence, no copy for it in memory is needed.

Variants of the element type in the cast

In an array cast we allow casts to an array type with a compatible type for the singletons.
This is more restricted than a compatible array type, which includes variable size arrays of
any size (the requirement for two array types to be compatible only mandates the sizes to
be the same if both are given by integer constant expressions). We also allow any qualified
or atomic version of the type, as for any other cast; these qualifiers and being atomic are
lost in the cast.

The selection after the cast
Our original design where the cast forgets the selection is flawed in one respect: a value of
array type without selection cannot exist. If it did, it would have to decay to a pointer in
many situations, which is impossible since a value hasn’t got an address. Therefore the res-
ult of an array cast must be a matrix which cannot decay to a pointer; i.e., a matrix carry-
ing an empty selection. In the range cast we finally designed, the result of the cast carries a
selection of singletons, and in the array cast the result carries an empty selection, as we
have already explained.

34

7 ASSIGNMENTS

Assigning an array
We allow the following:

intintint A[3][4], B[4];
A[:] = B[]; //Equivalent to A[0][:]=B[:], A[1][:]=B[:], etc.

If the left operand carries a selection where the selected elements are arrays (or if it car-
ries no selection, for a left operand in an assignment does not decay to a pointer), the right
operand may be an array matching the dimensions of those selected elements and with a 0-
dimensional selection, to prevent it decaying to pointer, as here. We do not allow such a
right operand to carry a (>0)-dimensional selection:

intintint C[2][3][4] A[3][4], B[4];
A[:] = B[]; //Allowed
A[:] = B[:]; //Not allowed
C[:] = A[]; //Allowed
A[] = C[0][]; //Allowed. Can also be written A = C[0][]
C[:] = A[:]; //Not allowed
C[:] = A[::]; //Not allowed
C[:][:] = A[0][]; //Allowed
C[:][:] = A[0][:]; //Not allowed
C[:][:] = A[0][:]+B[:]; //Not allowed
C[0][0][:] = A[0][:]+B[:]; //Allowed, singletons
C[:][:] = C[0][0][]; //Not allowed, for different reason

If we want to copy the result of A[0][:]+B[:] into each C[i][j] we need an interme-
diate variable or forgetting the selection, if it were possible. The latter would require se-
lecting again with [] to prevent the matrix from decaying to pointer:

intintint D[4];
D[:] = A[0][:]+B[:];
C[:][:] = D;
C[:][:] = _Unselect_Unselect_Unselect(A[0][:]+B[:])[]; //Supposing it existed

The right operand may also be an array whose selected elements match the left oper-
and’s selected elements:

intintint A[3][4][5], D[3][5];
A[:][:] = D[:];

That this is to be allowed follows from the general rule that A[:]... op B[:]... means
A[i]... op B[i]..., 0≤ i <_Lengthof_Lengthof_Lengthof(A). Hence, in this example, A[0][:]=D[0], etc., and
we have just explained that allow this (more formally, A[0][:]=D[0][]; i.e., D[0] does
not decay to a pointer). For the same reason, the following is allowed:

intintint A[3][4], B[3][4];
A[:] = B[:]; // A[0] = B[0], etc.

35

A[::] = B[::]; // Equivalent to this

The reason we do not allow the ones we do not allow is twofold: In the first place, code
using those expressions can be very confusing to read and understand. It is not clear
whether the right array is being assigned to each selected element (of array type) at the
left (the 1st case), as the not allowed A[:] = B[:] above, or whether it is a per-element as-
signment as the latest A[:] = B[:] above, (the 2nd case). Secondly, allowing those would
require breaking the rule for A[:]... op B[:]... For example,

intintint A[3][4], B[4];
A[:] = B[:]; //Not allowed

should be, according to that rule,

A[0] = B[0], etc.

which is not possible.
The allowed A[:] = B[] needs the [] after B just to prevent it decaying to a pointer.

We cannot just say in a situation like this that B without a following [] does not decay to a
pointer, because we may want it to decay, if the type of B[0] is compatible with the ele-
ment type of A (i.e., fill all elements of A with the address of B[0]):

intintint *A[5], B[4][8];
A[:] = B[1]; // A[i]= &B[1]

Assigning into an array
We considered allowing the assignments in the right columns as synonyms of those at the
left:

intintint A[3][3], B[3][3], C[3][3], D[3];

C[::] = A[::] - B[::]; C = A[::] - B[::];
D[:] = (A[:] == B[:]); D = (A[:] == B[:]);
D[] = A[0][]; D = A[0][];

But we want range operations always to involve matrices with selections or singletons: if
one operand carries a selection then the other operand either carries a nonempty selection
or is operated with each of the elements selected from the first operand. Therefore, of the
forms at the right column we only allow the last one (where the “first operand” is A[0][],
with just one selected element, namely A[0], and the “other operand” is D).

Overlapping in assignment
We do not allow expressions like

A[0:8] = A[1:8];
A[0:5] = A[4:5:-1];
A[0:8] = A[0:8]*A[3];
A[0:5] = A[0:5] == A[5:5]; //Assignment of a single value into five places.

36

The text on assignment expressions already includes the following requisite:

If the value being stored in an object is read from another object that overlaps in any
way the storage of the first object, then the two objects shall occupy exactly the same stor-
age and shall have qualified or unqualified versions of a compatible type; otherwise, the be-
havior is undefined.

This makes undefined the first of the following assignments, but no the second:

unionunionunion {intintint i; shortshortshort j} a;
a.i = a.j;
a.i = a.j + 0;

In the second assignment, the value stored in a.i is not read from an object, but is the res-
ult of the expression a.j+0.

For range operations we need be stricter, in order to make possible for those opera-
tions to be translated into vector operations in machine code. For example,

A[0:8] = A[8:8]*B[0:8];
A[0:8] = A[1:8]*B[0:8];

In the second assignment, the vector instructions may not produce what is written.
For this reason we require that no element which is written to is read at the right of

the assignment operator, except for the computation of itself. Thus, the first two below are
allowed but the next two are not:

A[0:8] = A[0:8]*A[0:8];
A[0:8] = A[0:8]*A[8:8];
A[0:8] = A[1:8]*A[1:8];
A[0:8] *= A[3];

The condition that an element not be read has to be understood in the abstract ma-
chine. For example, in

A[0:8] = B[0:8] + 0*A[1:8];

the implementation may choose not to read A[1:8], but in the abstract machine it is read
and the behavior is undefined.

Whether some “forbidden” element is read at the right might depend on input, or on
the code of a function unknown to the translator, as in

A[0:8] = f(A);

The wording of the condition needs not adjustment. If, during execution, no forbidden ele-
ment is read, the behavior is defined; otherwise, it is not. If, had the program been trans-
lated according to the abstract machine, some forbidden element would have been read,
but it is not according to how the program was actually translated, then the behaviour the
program exhibits is right under any possible interpretation. It may happen that the ele-
ments read depend on some input that in turn depends on how the program is exactly
translated, but that is already the case for constructions existing in the language:

p[3]++ + f(p)

Here f may end up reading some or other element from the array pointed to by p depend-
ing on some input.

37

Overlapping in the range

We can also make undefined any overlapping in the range expressions with the array being
assigned to:

A[0:A[0]] = 6;

The translator must evaluate L and B (as in A[B:L]) before translating the assignment, so
the construction does not seem problematic. The situation gets more complicated if A[0] is
also used at the right:

A[0:A[0]] = A[0:4]*2;

For this instruction to have defined behavior A[0] has to be 4 before the assignment,
which means that it will be eight after the assignment, but there is again no ambiguity.

In the previous examples, the program will exhibit a different behaviour if the trans-
lator translates it as follows: First compute all values of B’s present in the instruction; then
compute and assign the first value in the range assignment (which does not depend on the
values of L or s); then evaluate the expressions L’s and s’s and compute the rest of the as-
signment.

We don’t think the previous is a desirable behaviour. We therefore would mandate
evaluation of B, L and s before the range selection and don’t restrict them as regards over-
lapping with the object being assigned to. Actually, there is no wording needed for this.
The standard already includes

The value computations of the operands of an operator are sequenced before the value
computation of the result of the operation.

The value of A[b] is part of the result of the operation A[B:L] or A[B:L:s]. Hence, the
translator is required to evaluate B, L and s, which are operands, before evaluating A[b].

There remains the unspecification of whether the left or the right operand is evaluated
first, and this may cause undefined behaviour because of side effects in the expressions in
the range, just as for any other assignment instruction.

8 OTHER

The decaying of arrays to pointers
The subsection of the standard on additive operators includes the following constraint:

For addition, either both operands shall have arithmetic type, or one operand
shall be a pointer to a complete object type and the other shall have integer
type.

So, the operand cannot be an array, which we know it can. The text at 6.3.2.1 on arithmetic
conversion says that

Except when it is the operand of [...] an expression that has type “array of type”
is converted to an expression with type “pointer to type” that points to the ini-
tial element of the array object and is not an lvalue. [...]

But it is dubious that this text combined with the restriction allows an array as the oper-
and of the additive operator. It depends on whether we consider the expression at the left

38

of the + operator (say) to be directly the operand of the + or whether the conversion first
applies, thence it is the resulting pointer which is “seen” by the + operator. The conversion
does not take place irrespective of the operator the array is an operand of; hence, the array
is an operand of the operator in question. Note that the semantics does make explicit that
if both operands have arithmetic type, the usual arithmetic conversions are performed on
them, hinting at the need of an explicit mention of arrays as a possible operands. The ad-
mitted reading is that it is not needed.

Whatever interpretation one chooses, with the introduction of arrays with selection,
which are not converted to pointers, the text at the operator subclause must be explicit.

This also prompted the redefinition of the [k] array subscripting operator, which is no
longer defined as equivalent to (*((E1)+(E2))). This description could be preserved with
extra wording, either specifying a conversion of the array with selection to a pointer,
which goes against its intended use, or preventing it to apply to arrays with selection and
inserting a description for the later directly in terms of “selects the n-th element”, which
would leave a strange asymmetry: “why not apply the direct description also to arrays
which have no selection?”, would think a reader of that text.

The redefinition of the [k] operator is needed for other, unrelated reasons. Because of
this, this redefinition was moved to an independent proposal and the proposed wording
here assumes that to have been already integrated into the standard.

Literal 0 promoted to pointer
In a conditional operation, a common type has to be defined for the second and third oper-
ands. For this to be possible the types of those operands need be compatible or some rules
have to be defined in case they are not. The latter happens for null pointer constants,
pointers in general and pointer to voidvoidvoid. All combinations are possible except an ICE with
the value 0 and the value nullptrnullptrnullptr. For arrays, we will require that the singletons of one
and the other operand could be the operands themselves and define the common type ac-
cordingly. We exclude the combinations that need the value of the operand, not just its
type; that is, we exclude an ICE with the value 0 as possible match to a pointer or other
null pointer constant (except, of course, if they match as integers, not as null pointer con-
stants). The constant (voidvoidvoid*)0 need not be excluded because in any combination where it
is allowed as null pointer constant (i.e., taking into account its value, not just its type) it is
also allowed for its voidvoidvoid* type.

The following are not allowed, amongst others:

constexpr intconstexpr intconstexpr int A[3] = {0,0,0};
constexpr voidconstexpr voidconstexpr void *B[3] = {NULL, NULL, NULL};
1 ? A[:] : B[:];
1 ? (intintint[3]){0,0,0}[:] : (voidvoidvoid*[3]){NULL, NULL, NULL}[:];

The reason for not allowing this is that the reason for allowing them for scalar values
is missing. They need be allowed for scalars because 0 is a common way of indicating a
null pointer, so that, e.g., the following should be allowed:

p == q ? p : 0;
p == q ? p : NULL;

In the second line NULL might have been defined to 0. But in the example above A is de-
clared as an array of integers, so the values 0 it contains cannot be pointers. If the pro-
grammer wants those kinds of combinations both arrays shall be declared with elements of

39

pointer type. E. g.,

floatfloatfloat *A[3], *B[3], *C[3];
A[:] = (floatfloatfloat *[3]){&a, &b, &c};
B[:] = (floatfloatfloat *[3]){NULL, NULL, NULL};
C[:] = x > 0 ? A[:] : B[:];

We also exclude those combinations for the assignment operator in case the right oper-
and is an array. Thus, the first assignment below is valid but the second one is not:

voidvoidvoid *A[3];
A[:] = 0;
A[:] = (intintint[3]){0,0,0}[:];

A similar criterion is followed for the equality operators: if both operands are arrays with
selection the restriction is the same as for the conditional operator. If one is an array with
selection and the other is a singleton the latter may be a null pointer constant of integer
type in case the array’s singletons have pointer type or type nullptr_tnullptr_tnullptr_t, but the opposite is
not allowed: if the singleton operand has pointer type or type nullptr_tnullptr_tnullptr_t, so must have the
singletons from the array. The latter is also required in assignments but needs no extra
wording because the combination of a left operand of integer type and right operand of
pointer type or type nullptr_tnullptr_tnullptr_t is already not allowed.

Mixing arrays with selection and arrays which decay to pointers
We do not allow the following:

intintint *A[3], B[3];
A[:] - B; //Would be {A[0]-B, A[1]-B, A[2]-B}

This affects the operators -, <, >, <=, >=, = and -=. If the programmer wants this, the code
should be written thus:

A[:] - &B[0]; or A[:] - (intintint*)B
A[:] = &B[0]; etc.
A[:] < &B[0];

It seems to us that allowing the mixing would be a source of bugs. The workaround, as
shown in the examples above, is straightforward.

Arrays with selections of different depth
We allow them as in the third assignment below:

floatfloatfloat A[4][6], B[4][6], C[4], f;
A[::] *= f;
A[::] += B[::];
A[:][:] *= C[:];

In the first of the assignments above we have a matrix carrying a selection of singletons
operated with a singleton. In the second one, two matrices carrying corresponding selec-

40

tions of singletons. In the third one, two matrices carrying selections of singletons but not
matching.

When both operands are arrays carrying a nonempty selection the general rule dictates
that each of the corresponding selected elements are operated, taking care of the fact that
if these elements are arrays they cannot be converted to pointers, even if they carry no fur-
ther selection. When one operand carries a nonempty selection and the other operand is a
singleton, a similar rule says that each selected element is operated with the singleton.
When applied to the expression A[::] += B[::], which is equivalent to A[:][:] +=
B[:][:], this implies that each A[i] is operated with each B[i], i.e., A[i][:] += B[i][:].
Since these A[i] and B[i] still carry selections, the rule applies again and we get that each
A[i][j] is operated with each A[i][j]. When the rule is applied to the expression A[:][:]
*= C[:], we get again that each A[i] is operated with each C[i]. Now the first ones still
carry a selection but the C[i] are singletons, and A[i][:] *= C[i] means A[i][j] *=
C[i]; that is, each row of the matrix A is multiplied by the corresponding element in the
vector C.

Application of the previous rules when the selections are of different depth eventually
leads to an expression a op b where one (and only one) of the following holds:

1. both elements are singletons.
2. either a or b is a singleton and the other one is an array with no selection (or an

empty one).
3. either a or b still carries a nonempty selection and the other one is a matrix carry-

ing no selection or an empty one.

The first case will be the most common one and needs no wording. The second possibil-
ity is generally not allowed, and no wording will be provided for it in general. In the third
case, a rule will be stated according to which the innermost selected elements of the array
that still carry a selection shall match the dimensions of the other operand, and each selec-
ted element will be operated with that other operand, singleton per singleton (thus, if a rep-
resents each selected element and B the operator which no longer carries selection, a[::]
op B[::] is performed).

Thus, the cases 1 and 3 are treated in the same way: each selected element from the ar-
rary which still carries a selection is operated with the other operand, and one and the
other must have matching dimensions.

Assignment, equality and relational operators

With respect the third case, assignment operators are a partial exception in that the array
which remains with selection must be the left operand. Thus,

floatfloatfloat A[4][6], C[6];
A[:] = C[]; //Allowed
C[] = A[:]; //Not allowed

This will be taken into account when listing the possibilities for the left and right operands
of assignment operators, so that the general rule can be stated and is right as stated.

Equality operators allow the second case: A op s where A is a matrix with no selection
(or an empty one) and s is a singleton We have seen what its semantics is. As respect to
the third case, the result is not as defined by the general rule, but a single element for each
a op B, as we have seen.

For relational operator the third case is forbidden.

41

Multiplication of a matrix by columns

The rule forthe third case makes possible the multiplication of a matrix by columns:

floatfloatfloat A[4][6], B[4], C[6];
A[:][:] *= B[:]; // Multiplication by rows
A[:] *= C[]; // Multiplication by columns

On modifiable lvalues
The definition of modifiable lvalue excludes arrays from it. If we look for “modifiable
lvalue” in the standard we find the following instances, aside from the definition:

postfix/prefix increment and decrement
[...] arithmetic or pointer type, and shall be a modifiable lvalue.

An assignment operator shall have a modifiable lvalue as its left operand.

errno
which expands to a modifiable lvalue that has type int

Checked integer operation type-generic macros
result shall be a modifiable lvalue of any integer type other than ...

stderr, stdin, and stdout
are not required to be modifiable lvalues

Therefore, the only use of the term that needs arrays excluded from modifiable lvalues
is the one on the assignment operator. But that subclause lists the possible combinations
for the types of left and right operands, and an array can never be the left operand. So,

The exclusion of array from modifiable lvalues is not needed in the current standard

Hence, it would be more appropriate to say that an lvalue of array type cannot be modi-
fied because there is no production in the language that will do it, than to say that they are
not, intrinsically, modifiable.

Now we have arrays with selection, which can be the left operand of an assignment.
The obvious adjustment to the wording was to exclude from modifiable lvalues only arrays
not carrying a selection. But the preceding analysis shows that it is simpler to just drop the
clause “does not have array type” from the definition. A further change is needed: it has to
be required, for an array to be modifiable, that the singletons be modifiable lvalues.

This choice also accommodates better arrays at the left of an assignment as in E =
B[], where E does not carry a selection. Otherwise, in order to allow the latter construc-
tion, the wording on the assignment operators has to be adjusted to include specifically ar-
rays as possible left operands beyond modifiable lvalues, or to accept that they are allowed
by saying that E= is equivalent to E[]=. Contrary to arrays decaying to pointer for, e.g., the
addition operator, here the selection E[] does not transform the array into anything differ-
ent. In short, it would be wrong to pretend that arrays without selection continue to be not
modifiable. We do still say that E= is equivalent to E[]=, but this is just to be able to de-
scribe those assignments by the same words used for assignments where the left operand
carries a selection.

42

9 COMPLEXITY OF IMPLEMENTATION

Graded complexity of array selections
The range selections proposed in this paper are graded in complexity of semantics and in-
teraction with the current language. The following is an informal list of growing complex-
ity or of dependency, later features requiring prior ones. In many cases there is not a
growth in the complexity of implementation. Here, A does not include itself range selec-
tions, i. e. is an array without selection; [k] represents the array indexing operator;
whenever [B:L] is present it is understood that [:] or [B:L:s] is also possible, and ICE
stands for integer constant expression. The items in grey are meaningful for the long inter-
pretaion, which we finally did not take:

A[B:L] with B, L and s ICE . [k] is allowed.

A[B:L] with L and s ICE. [k] is allowed.

A[B:L][B’:L’]... , L, s, L’, s’ ... ICE. [k] not allowed on multidimensional selec-
tions.

A[B:L][B’:L’]... , L, s, L’, s’ ... ICE. [k] allowed when the second dimension is not
broken (This dimension will become the outermost dimension of the selected ar-
ray.)

A[B:L][B’:L’]... , L, s, L’, s’ ... ICE., with [k] allowed anywhere.

A[B:L][B’:L’]... , L and s might not be ICE but only in inner ranges, not in the
outermost dimension. [k] allowed when, in the the second dimension (which will
become the outermost one of the selected array), L is an ICE.

A[B:L][B’:L’]... , L and s need not be ICE. [k] allowed anywhere.

A[B:L][B’:L’], where A[B:L] is an array of pointers.

Independent from these, the following restrictions on the value of s are also graded in
difficulty of handling.

s might not be zero.

s might be zero only if L is an ICE equal to 1.

s might be zero only if L is 1.

s might be zero.

With respect to the broken character of selections, their length and the type of the se-
lected elements, the following is an increasing list of allowed selections:

A[R] where A is a unidimensional array not carrying a selection, R can have any
form except empty and B:L:s and if it has the form B:L, L is an ICE.

A[::] where A need not be unidimensional and if it carries a selection it must be
of the above form.

Like the above, with spurious [] and [::] allowed.

[] and [:]
[B:L:s] allowed in the first selection, with s an ICE of value 1 or -1.

In addition, s need not be an ICE.

43

L need not be an ICE.

------ Up to here the arrays are not broken ----

s an ICE, but need not be 1 or -1.

Any other combination for the first selection

Any other combination

This proposal includes all possibilities listed in the foregoing lists except the last one of
the first list.

What would be mandatory
As we noted in the introduction, small implementations are reluctant to adopt complex fea-
tures, but at the same time the committee should strive to avoid divergence in the imple-
mentations, which requires standardising common extensions and, when possible, foresee-
ing it. The only way to achieve both goals is to standardise the features and at the same
time allowing implementations not to implement them if they don’t want.

In the first place, we do not want too make range selections mandatory:

__STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS__ Undefined or defined and expands to 0 if range selec-
tions are not supported; expands to 1 otherwise.

Note that we have written range selections. We intend to make empty selections man-
datory. The reason we name it array_selections and nor range_selections is that other ar-
ray selections are possible, though we do not provide wording for them (indexed and direct
selections).

The established practice for feature test macros is to define the macro in negative
terms:

__STDC_N0_ARRAY_SELECTIONS____STDC_N0_ARRAY_SELECTIONS____STDC_N0_ARRAY_SELECTIONS__ Defined to 0 if range selections are not supported.

This way, if in the future the feature is made mandatory, the macro can disappear. Actu-
ally, this can also be done if the macro is defined in positive terms. If so, programs will
need a test for the version under which they are being compiled if they want to test the
availability of the feature, since lack of the macro can mean very old or very new version.
But a definition in negative terms also requires a test for older version. In one case the ver-
sion test is to distinguish before mandatory from after mandatory; in the other case, before
existence from existence.

There may be a difference in the expression of intent; a negative definition seems to
convey that supporting the feature is the default. We choose the positive definition because
we will be using the macro also for another purpose, where absence of the macro cannot
possibly mean the new behaviour (see “Conflict with array subscripting” with respect to
direct selections below).

The different gradings above provide a hint as to the partial implementations of range
selections that implementations may choose. Implementations defining __STDC___STDC___STDC_ARRAY_ARRAY_ARRAY_
SELECTIONS__SELECTIONS__SELECTIONS__ to one may be allowed to accept a partial set of possible combinations for
the range. We propose the following optionality:

__STDC_ARRSEL_NESTED____STDC_ARRSEL_NESTED____STDC_ARRSEL_NESTED__ Expands to 0 if selections of the form [B:L] and [B:L:s]
can only be applied to expressions of pointer type and to arrays carrying no selec-
tion or an empty selection, and range operations are allowed only if the selected

44

elements from the matrices treated as a range of objects are singletons. Expands
to 1 otherwise.

__STDC_ARRSEL_STEPPED____STDC_ARRSEL_STEPPED____STDC_ARRSEL_STEPPED__ Expands to 0 if stepped selections are not supported; to 1
if they are supported.

In addition, we have thought of another macro expressing partial support:

__STDC_ARRSEL_CONSTANT____STDC_ARRSEL_CONSTANT____STDC_ARRSEL_CONSTANT__ Expands to 1 if L and s need be integer constant expres-
sions as well as B if the selection applies to an array already carrying a selection.
Expands to 0 otherwise.

Here the values of 0 and 1 are reversed: The value 0 means more cases supported, the
value of 1, not supported. The reason for this is that we are not including this macro in the
present proposal. If later on it is introduced, a value 0 should mean the same as its ab-
sence.

If the first two macros expand to 0 broken selections cannot arise. Furthermore, a
value of 0 in the first macro means that a maximal sequence in the code of adjacent array
selections either results in a selection of singletons or is an empty selection (i.e., [][]...
[]), except that a partial selection is allowed if it is used as the operand of some operator
that treats it as a whole, namely, sizeofsizeofsizeof or the typeof operands. Such an implementation
would allow comparisons of whole matrices as in A[] == B[] and assignments like E =
B[], but not assignments like E[:] = B[], which is a range operation on the elements
E[:], which are not singletons.

The reason why an ICE expression is not enforced for B in the outermost selection
when __STDC___STDC___STDC_ARRSEL_ARRSEL_ARRSEL_CONSTANT__CONSTANT__CONSTANT__ is 1 is that a variable base can be achieved even with B
restricted to a literal 0, as in (A+n)[0:L]. This is equivalent to A[n:L], so mandating an
ICE in place of B seems pointless. The reason why B is required to be constant in inner se-
lections is that the restriction expressed by this macro means that all selected elements are
at a translation time known offset from the base of the array (if not applied to an array
with a VLA element type).

A value of 0 for the first two macros constitutes a considerable simplification for the
implementation with respect to the full set and yet it offers the programmer the most com-
mon use cases of range selections. It becomes even more useful if combined to casts that
redimension the matrix:

intintint A[4][4][20];
((intintint[16][20])A[])[0:8];

More macros or more values for the proposed macros could be defined, but a fine
grained possible support expressed via macros would be of no use if the programmer
knows what his implementation supports, or a burden for the programmer if he wants to
produce a strictly conforming program. In the latter case he may cut short and just test for
none / partial in a specific form / full support, ignoring any other combination.

As regards a step zero, we gradually shifted our preferences from including it in
__STDC___STDC___STDC_ARRSEL_ARRSEL_ARRSEL_STEPPED__STEPPED__STEPPED__, which could then take values 0, 1 or 2, to allowing the re-
striction (of not allowing a step zero) only in case the implementation supports only con-
stant L and s, i.e., in case the macro __STDC___STDC___STDC_ARRSEL_ARRSEL_ARRSEL_CONSTANT__CONSTANT__CONSTANT__ were 0 (by then we
were including this macro in the proposal), to require the support for step zero whenever
stepped selections are supported. This happened because of our thinking of how an imple-
mentation may translate range operations.

Another reason for not allowing more complicated yet partial implementations of the
feature is that, if a translator finds a certain selection too complicated it can always trans-
late it into a for loop. Thus, either provide a simple set of features or provide the full set.

45

The macro __STDC_ARRSEL_CONSTANT____STDC_ARRSEL_CONSTANT____STDC_ARRSEL_CONSTANT__ becomes more significant when direct selec-
tions are included, one of the topics of the next section.

How range selections might be translated
Take as example the following instructions:

floatfloatfloat A[6];
A[:] = B[0:6] * C[0:6:2];
A[0:4] = B[4:4] * s;

When the compiler sees the selection [:] from A it has parsed a selection of 6 elements.
Therefore, any selections following in the instruction (and not broken by ,, ? &&, || or
within unary, not arithmetic operators), if they carry a nonempty selection they must carry
a selection of six elements. The compiler may parse all selections, check that they are of six
elements if given by ICE and prepare to translate the instruction into vectorial processor
instructions or a for loop. In this case,

for i = 1..6 A[i]=B[i]*C[2*i]

In the second statement, in addition to operands which are arrays carrying a selection
of a matching number of elements, four in this case, one of the operands is a singleton:

for i = 1..4 A[i]=B[i]*s

The same scheme can be applied when the selections have different depth:

floatfloatfloat A[6][9], C[6];
A[:][:] *= C[:];

Which gets translated to

for i = 1..6 A[i][:]*=C[i]

which in turn is translated to

for i = 1..6
 x=A[i]. y=C[i]
 for j = 1..9 x[j]*=y

The instruction may also include an array with an empty selection. This is treated like
a singleton, and when it appears in the for loop the operands it is operated with must be
matrices of the same dimensions and the operation is performed elementwise:

floatfloatfloat A[6][9], C[9];
A[:] *= C[];
for j = 1..6 A[i]*=C[] --→ for i = 1..6

 x=A[i]
 for j = 1..9 x[j]*=C[j]

except that C is evaluated only once.

floatfloatfloat A[6][9][3], C[9][3];

46

A[:] *= C[];
for j = 1..6 A[i]*=C[] --→ for i = 1..6

 x=A[i]
 for j = 1..27 x[0][j]*=C[0][j]

The previous analysis is a very cursory one. Yet we can already draw an important con-
clusion from it: the selections and different operands that constitute an instruction may
get evaluated in many different orderings. In particular, the option to first evaluate all
range selections is one obvious one.

Sequence points

The chain of operands that must carry selections of the same length (if not empty) is
broken by the operands

, ? || &&

in addition to those unary operators that produce a number (sizeofsizeofsizeof, etc., [] subscripting)
and _Generic_Generic_Generic. Those four above are, not by accident, the ones that introduce sequence
points. A recent proposal to introduce more sequence points and impose an evaluation or-
der therefrom should take into account its impact for the translation of range operations.

10 INDEXED AND DIRECT SELECTIONS

An array with selection as the index
As in the following example:

size_tsize_tsize_t n, I[3];
floatfloatfloat A[10];

I[] = ((size_tsize_tsize_t[3]){0,n,n+1})[];
A[I[:]]; //{A[0], A[n], A[n+1]}

The reason for requiring the selection [:] after I is apparent when considering multi-
dimensional arrays. Suppose we don’t require it and take the elements of the array placed
inside [] as the indices (the first interpretation, which will be referred to later on). Sup-
pose we don’t require it:

size_tsize_tsize_t I[4][2];
floatfloatfloat A[8][8];
I = (typeoftypeoftypeof(I)){{0,3}, {2,2}, {4,1}, {6,0}};
A[I]; // {A[0][3], A[2][2], etc.}
A[I[0]]; // This should be A[0][3]
A[{0, 3}] // But is {A[0], A[3]}

Our first choice to provide all options and a coherent selection scheme was that a one-
dimensional array specifies a sequence of indices to be applied to successive dimensions.
Therefore, placing I as defined above inside an array selector [] has no meaning. If we

47

want a series of elements to be selected we need to provide a range of arrays:

A[I[:]]; // {A[0][3], A[2][2], A[4][1], A[6][0]}
A[I[0:2]]; // {A[0][3], A[2][2]}

size_tsize_tsize_t J[2] = {0,2};
size_tsize_tsize_t K[2][1] = {{0},{2}};
A[J[]]; // A[0][2]
A[J[:]]; // {A[0], A[2]}
A[K[:]]; // {A[0], A[2]}

The last line has the displayed meaning because of the way we have defined [(size_tsize_tsize_t[])
{0}]. The next to last line because of the way [0] is already defined.

The rule is: The selection A[I[R]] has as many elements as elements are selected in
I[R].

This criterion also has the advantage that array subscripting operations, where the ex-
pression n in [n] has integer type, and array selections with an array as the index —which
we will call indexed selections —, can be distinguished visually. The latter will always fea-
ture a selection. The only exception is the selection of only one element, as in

size_tsize_tsize_t I[3] = {2,1,1};
intintint A[4][4][4];
A[I]; // A[2][1][1], since a nondecaying I is equiv. to I[]
A[I[]]; // The same as above
A[I[0]][I[1]][I[2]];

The three selections are equivalent (later it is seen that they should not be equivalent; see
the section below “Singleton or not”). We believe it is the third which should be used, not
the first (that is, when we were considering this design). Those three options are always
available to the programmer.

The kinds of matrices allowed as indices
The index matrix shall be one- or two-dimensional. More specifically, I[0] should be:

— of integer type; or
— A fixed length array whose element type is an integer type.

Furthermore, if the matrix is bidimensional it may not carry a depth-two selection.
Two- and higher-depth selections could be possible provided the type of the selected

elements is one of the above, but it seems to us an unnecessary complication.
Apart from the type of the matrix we may restrict the form of the expression. We may

forbid computed arrays, as in A[I[0:n]+J[:]/2]. These computed arrays complicate the
translation. If the array expression is given by an identifier of array type, to which possibly
an array selection has been applied, the indices of the elements chosen in A are taken dir-
ectly from an array, say I, A[i] needing I[i]. For example, the following instruction could
be translated as shown:

A[I[:]] = B[:]+C[:]; //Assume the length is n
for i = 1..n A[I[i]]=B[i]+C[i]

But if the index matrix is computed this is not possible. However, a compiler able to trans-

48

late a range operation can place inside A[] the operation that yields the i-th element of the
index matrix, avoiding the need to allocate memory for the computed index matrix:

for i = 1..n A[I[i]+J[i]/2]=B[i]+C[i]

It seems therefore that the complication is more apparent than real. We prefer that not
restriction appies to the index matrix in this respect. But just in case it be desired to apply,
in a first version, a restriction on the index matrix, here follows a proposal on how to for-
mulate it:

Our first idea was to require that the first token after the opening [be an identifier.
This would make invalid a valid expression by enclosing it in (). There is no case in the
language where this happens for an expression. We may modify the requirement to say
that “after all outermost pairs of matching () have been removed the first token is an iden-
tifier”. But this would leave out expressions like (I[0])[:]. We may strip all pairs of re-
dundant parentheses, but that would still miss strings and compound literals. In the end
we came to a wording which describes the possibilities for the expression after removal of
outermost (), leading to a recursive specification, which is equivalent to saying that the
expression must match direct-array, defined as follows:

array-kernel: direct-array:
(direct-array) array-kernel
constant (of array type) array-kernel [cond.-expr. (of integ. type)]
compound literal (of arr. type) array-kernel range-selector

avoiding the definition of these two terms in the syntax.
Then we realised that a semantic definition is much easier. What we want in the end is

that the indices be retrieved from some array which already exists in memory. Thus, we
may say that the index expression has to denote and object, or even better, that it has to be
an lvalue.

Limit to nested indices

We may allow implementations to impose a limit on the nesting of indices in array select-
ors, listed on 5.3.5.2 Translation limits:

— 15 nesting levels of index arrays in array selectors

We were guided for this by the “12 pointer, array, and function declarators (in any combin-
ations)” and the “63 levels of nested structure or union definitions”. We think that the lat-
ter is the one that best matches the case at hand, but at the same time see index nesting in
selectors much less likely than nesting of structures.

An array without selection, sometimes
While we argued that mandating the index to carry a selection facilitates visual discrimina-
tion of array subscripting and range selection, having to always type I[:] may be felt as a
spurious nuisance. If I is two-dimensional there is no other possible interpretation for [I]
(since we are precluding I[:][:]); also if the array to which the selection is being applied
is one-dimensional, which will probably be the most common use. The programmer may
tell apart easily a range selection of this kind from array subscripting by, e.g., using always
a capital letter for the index matrix and a lowercase one for scalars, or by using only
A,B,I,J for matrices that may function as indices, say.

Therefore, we propose that a selection in the index matrix be mandatory only if the

49

matrix to which the indexed selection is applied is >1-dimensional and the index matrix is
one-dimensional. Thus,

size_tsize_tsize_t I[]={2,1}, J[][1]={{2},{1}},
 K[1][2]={{2,1}}, L={1,3,0};
intintint A[6], B[6][6], C[6][6][6];
A[I], A[J];
B[J]; // {B[2], B[1]}
B[K]; // B[2][1]
B[I[]], C[I[]]; // B[2][1], C[2][1]
B[I[:]], C[I[:]]; // {B[2], B[1]}, {C[2], C[1]}
C[L[]]; // C[1][3][0]
C[L[:]]; // {C[1], C[3], C[0]}
B[L[0:2]]; // {B[1], B[3]}
B[L[:]]; // {B[1], B[3], B[0]}

An implementation might relax this further to require a selection only if the number of
elements of the matrix used as the index is ≤ the number of dimensions of the matrix at
the left, so that in the last of the examples above [:] would not be needed: B[L].

We have to be careful not to break the equivalence between I and I[]. Since, when A
and I are one-dimensional, we have made A[I] equivalent to A[I[:]], so shall be the
meaning of A[I[]]. We cannot say that in this case the selection of I is ignored because it
is still needed if the programmer does not want all the elements in the index array to be se-
lected:

floatfloatfloat A[10];
intintint I[3]={0,9,3,6};
A[I[1:3]];

So we simply state that “if the elements of A are singletons the selection A[I] is equivalent
to A[I[:]]”. Likewise if neither the elements of A nor those of I are singletons. So the rule
reads

if the elements of A are singletons or the elements of I are not
singletons the selection A[I] is equivalent to A[I[:]]

An array without selection, always
The previous rule leaves as exceptional the case when the elements of A are not singletons
and the elements of I are. We prefer not to have this exception. This means that if the user
wants to apply {2,1} as one-element selection of depth two, he will need an extra {} sur-
rounding; i.e., a bidimensional matrix as index:

intintint A[6][6], I[]={2,1}, J[1][2]={{2,1}};
A[I]; // Equiv. to A[I[]] and A[I[:]]. {A[2], A[1]}
A[J]; // Equiv. to A[J[]] and A[J[:]]. A[2][1]

The selection A[I] is equivalent to A[I[:]]

We have come round to the first interpretation, which we deemed wrong, but now we
don’t think A[I[0]] should be A[0][3]:

50

I = (typeoftypeoftypeof(I)){{0,3}, {2,2}, {4,1}, {6,0}};
A[I]; // {A[0][3], A[2][2], etc.}
A[I[0]]; // {A[0], A[3]}
A[I[0:1]]; // Now this is needed to get {A[0][3]}

(We are supposing that I has been declared before, with type T[4][2], for some T.)
That the last two lines yield different results is not incoherent. I[0] is a 1-dimensional

matrix while I[0:1] is a 2-dimensional matrix with only one element in its outermost di-
mension. Their types are T[2] and T[1][2] respectively. Similarly,

J = (typeoftypeoftypeof(J)){0, 3, 1, 2};
A[J]; // {A[0], A[3], A[1], A[2]}
A[J[0]]; // Array subscripting. A[0]
A[J[0:1]]; // {A[0]}

for J[0] is of type T and J[0:1] is of type T[1].
The relation between the number of elements of the index matrix and the number of

elements of the resulting selection is now that they are equal. When we mandated a selec-
tion to be always present in the index matrix, the number of elements of the resulting se-
lection equalled the number of elements selected in the index matrix. Now this is still the
case for nonempty selections, but is different for an empty one. Now we have

_Lengthof_Lengthof_Lengthof(A[I]) = ___LengthofLengthofLengthof(A[I[]]) = ___LengthofLengthofLengthof(A[I[:]]) =

 = _Lengthof_Lengthof_Lengthof(I) = _Lengthof_Lengthof_Lengthof(I[]) = _Lengthof_Lengthof_Lengthof(I[:])

And generally, ___LengthofLengthofLengthof(A[I[R]]) = ___LengthofLengthofLengthof(I[R])

R here may be empty, :, B:L, B:L:s or an indexed selection itself. It may be :: only if I
is one-dimensional.

The relation between the depth of the resulting selection in A and the index matrix is
that the former is the number of elements of the elements of the latter; i.e., of R[0] in our
notation. In the selection A[I[0]] the index matrix is I[0], and I[0][0] are singletons.
In A[I[0:1]] the index matrix is I, and its single element is a bidimensional array:
I[0:1][0], which is I[0].

The type of the selection
The type of a selection of the form A[R] where R is a matrix is obvious after lvalue conver-
sion. If the elements of R are arrays of length m, or singletons in which case we let m=1,
and they are l in number (the selected ones. In any case, R undergoes lvalue conversion),
the selection has depth m and consumes m dimensions from A, and the type is

typeoftypeoftypeof(A[0] . . . [0])[l]

where there are m [0]’s. Equivalently, if the type of A’s singletons is T and A has n dimen-
sions,

T[l][l(m+1)] . . . [l(n)]

Long interpretation
The type before lvalue conversion is not that clear. The values of multidimensional selec-
tions in R (the length m arrays above) can be mixed and repeated in any way. One may

51

choose to impose immediate lvalue conversion of an indexed selection; that is, an indexed
selection expression is not an lvalue. This is not a good choice because it precludes one
good use of indexed selections:

floatfloatfloat A[10], B[4];
intintint I[3]={0,9,3,6};
A[I]=B[:];

Before lvalue conversion, the selection expressed by A[R] is contained in the object re-
ferred to by A and there may be holes. This is just as for range selections. Repetitions are
part of the selection, but the repeated elements do not appear twice in the object, as is the
case for a stepped selection of step zero. There is no other choice, since if it is still an
lvalue we have to keep it inside A. The first m dimensions (continuing with the notation
above) are broken in an irregular way.

We can make the resulting array with selection less complicated if we collapse the first
m dimensions. Continuing with the notations above, the types of A and of the indexed selec-
tion are respectively:

T[l(1)] . . . [l(m)][l(m+1)] . . . [l(n)]
T[l(1)×l(2)× · · · ×l(m)][l(m+1)] . . . [l(n)]

In this way there is only one dimension with an irregular selection. Furthermore, with this
choice the matrix does not change the number of dimensions upon lvalue conversion.

Example:

floatfloatfloat A[2][3][4][5][6];
intintint I[][3]={{0,1,3}, {1,2,0}, {1,2,3}, {0,1,1}};
A[I]; // A matrix of type floatfloatfloat[24][5][6] with selection [{7,20,23,5}[:]]

That is, if we use ΑΑΑ to represent the object at A accessed with type floatfloatfloat[24][5][6], the
selection is {AAA[7], AAA[20], AAA[23], AAA[5]}.

In all the above, if A carries a selection of depth k, instead of the type of A the type of
A[0] . . . [0] has to be taken, where there are k [0]’s.

With this choice _Lengthof_Lengthof_Lengthof gives the number of elements selected in the matrix.

Short interpretation
In this case, the type before lvalue conversion is always the same as after lvalue conver-
sion, except for the brokenness qualifier. Taking the same example as above, the type of
A[I] is floatfloatfloat[4][5][6].

As left operand in an assignment
An array with an indexed selection can be used as the left operand of an assignment
provided the selection has no duplicate elements. This embraces a stepped selection with a
step equal to zero as a particular case.

Singleton or not
If the matrix A has n dimensions and the depth of the selection is m, the selection has n-
m+1 dimensions. If therefore m equals n, the selection is a 1-dimensional array:

52

intintint A[5][6], I[][2]={{0,1}, {1,2}};
A[I]; // {A[0][1], A[1,2]}

If in addition the index matrix has one element we get a one-dimensional array with one
element:

intintint J[][2]={{0,1}};
A[J]; // {A[0][1]}
A[I[0:1]]; // {A[0][1]}

Since obviously n is the maximum possible value for m, there is no way to obtain a single-
ton from an indexed selection, even after lvalue conversion.

Indeed, there is no way to obtain a singleton from any selection whatsoever. Array sub-
scripting is needed.

Margins
Long interpretation
We have not yet fully specified the type of a selection like A[I] above before lvalue conver-
sion. We have said that it is a matrix of type floatfloatfloat[24][5][6] with selection 7,20,23,5,
but not what the resulting type is. It can be floatfloatfloat[24][5][6], but it can also be
floatfloatfloat[19][5][6], where the number 19 comes from 23-(5-1), and A[I] goes from AAA[5] to
AAA[23].

if we have chosen stepped selections, no matter how complicated they be, to be restric-
ted to the interval of selected elements, it seems we should do the same for indexed selec-
tions. To exhibit a plausible example,

floatfloatfloat A[6][10];
intintint I[][2]={{a,b}1, {a,b}2, ... {a,b}l};
A[I]; // Has type floatfloatfloat[max{ai*10 + bi} - min{ai*10 + bi} + 1], 1 ≤ i ≤ l.

and has no margins.

Direct selection
When using indexed selections with a fixed number of elements in the selection, having to
express it through an intermediate index matrix seems an unnecessary roundabout. In-
stead of having to write

intintint I[3]={0,2,n}; A[I];
or A[(intintint[3]){0,2,n}];

simply write A[{0,2,n}[:]] or, more simply, A[0,2,n]. We do not propose the former to
be allowed, just the latter. This latter syntax production clashes with array subscripting,
because the subscript in this construct can be “comma expression”, not just an assignment
expression (which itself seems too much). We ignore this for the moment and consider it at
the end of this section.

The interpretation of the list is that if its elements are singletons they represent the
elements selected from the outermost dimension, while if they are themselves brace-en-
closed lists then each of these lists represents a multidimensional selection, and obviously
all the lists must have the same number of elements:

53

float float float A[4][4];
A[0,2,n]; // {A[0], A[2], A[n]}
A[{0},{2},{n}]; // {A[0], A[2], A[n]}
A[{0,0},{0,2}] // {A[0][0], A[0][2]}
A[0,2] // {A[0], A[2]}
A[{0,2}] // {A[0][2]}

A selection like A[{0,2}] is not ambiguous because it cannot mean {A[0], A[2]},
which needs [0,2]. Nor it can be A[0][2], for reasons already explained.

A direct selection is the same as a selection with an array as the index, composed of the
elements of the given list. So, just as with indexed selections, the number of elements
within [] is the number of elements of the selection.

The values of the __STDC_ARRSEL___STDC_ARRSEL___STDC_ARRSEL_ macros should have the same meaning for braced
selections than for indexed selections given by a compound literal.

Side effects in the expressions composing the list do not seem a good idea. Restricting
them further to integer constant expressions or identifiers seems too much, since one may
write A[0,1,2, n,n+1,n+2], for example. We do impose (that is, if we did provide word-
ing) that their values have to be nonnegative. As to the side effects, one argument in favour
of allowing them is that, since

intintint I[3]={0,2,n++}; A[I];

is permitted, so should A[(intintint[3]){0,2,n++}].

Constant range expressions
The recently introduced constant range expression (CRE) is another natural way of specify-
ing a selection, and it can be combined with a comma-separated list of integers:

A[0, 3...10, 13]

Constant range expressions duplicate the functionality of range selections of the form
B:L with B and L integer constant expressions. This is a reason strong enough to exclude
them if they were not already in the language. Since they are, the obvious choice is to ex-
clude range selections of the kind B:L, extending range expressions to include non-con-
stant ones. But we have already argued that the specification beginning : end (or beginning
... end, the argument is not about the syntax) is a bad choice for C. The type of the resulting
expression (after lvalue conversion at any rate) depends on the value of the length l, and in
particular it should be given by an integer constant expression when it is a compile-time
constant, as in [2*n:4], which in the beginning : end form would become [2*n:2*n+4].
This explicit presence of the constant length is desirable not only in form but even more in
substance for the generated program, to make it possible for the compiler to translate the
expressions of which they are part into vectorial instructions.

Constant or not

CRE are, as their name implies, given by integer constant expressions. We like to keep it
this way for array selection from a matrix. For any selection which is not constant the
present proposal gives the programmer plenty of tools for expressing it; CRE are just an-
other syntax for selections [B:L] with constant B and L. On the other side, we think the
comma-separated integers need not be constant, for if A[(intintint[2]){n,n+2}[:]] is al-
lowed it seems difficult to justify that A[n,n+2] is not.

54

The different kinds of array selections

Terminology

Empty selector: []
Range selector: [B:L], [b...e], [B:L:s], [:], [::]
Indexed selector: [I] (I may or may not carry a selection)

Direct selector: [K’, K’’, ... ,K(l)], [{k(1), ... ,k(m)}’, {k(1), ... ,k(m)}’’, ...]

Here B, L, s, k stand for expressions of integer type, b, e for integer constant expres-
sions, I for an expression of array type one- or two- dimensional and K for either an ex-
pression of integer type or a CRE.

Note that we have included a single CRE in range selectors.

The most general selection carried

As a result of the combination of all possible range selections, an array carrying a non-
empty selection will always carry a certain selection in each dimension, for a number m of
dimensions starting from the outermost one, which we have called the depth. In each di-
mension the kind of selection is one of *, b:l, b:l:s or irregular, where * means “all ele-
ments are selected” and an irregular selection is given by the index array or direct selec-
tion used for it, in which case the length of the dimension it applies to is the product of the
lengths of the dimensions involved in the array.

The feature test macros for indexed and direct selections
__STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS__: The words “range selections” which refer to what is

supported, have to be replaced by “array selections beyond empty selections”.

__STDC___STDC___STDC_ARRSEL_ARRSEL_ARRSEL_STEPPED__STEPPED__STEPPED__: If indexed selections are allowed, stepped selections have
to be allowed too, including those with a step equal to zero, for it is just a particular case
of indexed selection; i.e., a stepped selection can be achieved by means of an indexed selec-
tion, though if the length of the former is not an integer constant expression a variable
length array may be needed for the index matrix.

Therefore, there are two possibilities for this macro with regard to indexed selections:
That a value 1 implies that both stepped and indexed selections are supported, or that a
value 1 implies only support for stepped selections and support for indexed selections is
communicated by a value of 2 here. We prefer the second one, which splits support for in-
dexed selections from support for range selections.

Direct selections require the translator to place the indices in the translated program.
this is different from indexed selections, where the compiler need only replace A[i] by
A[I[i]], where A and I are the addresses of the array denoted by the expressions A and I
respectively. But placing a list of values in the code, or a list of expressions to compute cer-
tain values, is already done for initializers. Since, from the user viewpoint, indexed and ar-
ray selections are very similar, we prefer to keep them together in the feature test macros.
Therefore, support for direct selections is included together with support for indexed selec-
tions when __STDC___STDC___STDC_ARRSEL_ARRSEL_ARRSEL_STEPPED__STEPPED__STEPPED__ is 2.

__STDC_ARRSEL___STDC_ARRSEL___STDC_ARRSEL_NESTED__NESTED__NESTED__: A value of 0 here does not mean that array or direct selec-
tions can only be one-dimensional. The added complexity of two- or higher- dimensional
range selections is that a broken second (or inner) dimension can arise. Hence, the address
of A[0][0] might not be the same as that of A[0]; also, A[0] will not be a “plain” array.

55

By contrast, a selection {e,f} collapses the first two dimensions of A into one and selects
there the element e·l+f, where l is the length of A; this is the element at offset e*s+f*s’
from the base of A, where s is the size of each (array) element of A and s’ that of A[0]’s ele-
ments. These computations of offsets are right provided A is not carrying a broken selec-
tion, and in particular if it is not carrying a selection, which is precisely what __STDC___STDC___STDC_
ARRSEL_ARRSEL_ARRSEL_NESTED__NESTED__NESTED__ guarantees.

Nor is there a need for two indices when translating range operations:

T A[n]; intintint I[n]; T A[n][l]; intintint I[n][2];
A[I[:]] = B[:]+C[:]; A[I[:]] = B[:]+C[:];
for i = 1..n A[e(i)]=B[i]+C[i] for i = 1..n AAA[e(i)*l+f(i)]=B[i]+C[i]

where e(i) at the left stands for the i-th element of I and e, f, l at the right have the same
meanings as above, and AAA there stands for the matrix at the address of A interpreted with
type T A[n*l].

What a value of 0 in this macro would mean is that indexed and direct selections can
only be applied to the same expressions as a [B:L] selection; i.e., expressions of pointer
type or arrays not carrying a selection or carrying an empty selection.

__STDC_ARRSEL___STDC_ARRSEL___STDC_ARRSEL_CONSTANT__CONSTANT__CONSTANT__: If it is 1, only constexprconstexprconstexpr arrays are allowed as the in-
dices, or compound literals where all the elements are integer constant expressions, or
strings. For direct selections, it restricts the integers therein to ICE.

Some intermediate combinations could be possible, such as requiring a fixed length ar-
ray as the index. But as we argued, it is better to restrict the possible combinations of par-
tial implementations. Note that a value of 1 in this macro also implies that the length of
the selection carried by the index matrix, if it carries one, is given by an integer constant
expression.

Comma-separated list

Mixing with CRE

It may be preferred to keep a comma-separated lists of integers and constant range expres-
sions separated, so that

A[3,6,5,2,1], A[3...10]

would be allowed but A[0, 3...10, 13] not. Since a CRE could always be expressed by a
(possibly long) comma-separated list of integers we prefer to allow the mixing; that is, a
CRE in the middle of a list is not different than many single values in its place.

However, a translator can treat a lone CRE as the equivalent [B:L] selection, and may
place the values of a comma-separated list with no CREs in the generated code (or just re-
serve the space for those that need to be computed at runtime) and use that in-memory list
to take the indices from there at runtime. This second strategy will fail or become inad-
equate if a range expression specifying a long range is inserted in the list:

A[0,1, 0...99'999, 99'998,99'999]

A long list may also arise as the result of a use of #embed#embed#embed. In order that the implementation
can store all the integers in memory, we allow it to place a limit on their number:

— 32767 for the total number of bytes required to store the subscripts specified in a
direct array selector list (in a hosted environment only), counting each number in a

56

constant range expression individually.

which copies the limit for the total number of bytes in an object. We’d like to see a similar
but substantially smaller limit for freestanding environments, but since there is none cur-
rently expressed for the number of bytes in an object, we don’t express one here either.

Whether the numbers within each {} in case of bidimensional lists, equal in number to
the number of dimensions in which the selection acts, have to be stored individually or it is
possible to just store the resulting index in the collapsed matrix, depends on whether all
quantities involved are integer constant expressions or not: those numbers and the sizes of
the arrays by which they have to be multiplied. These bidimensional lists cannot contain
CREs, so we don’t think any program will be restricted on that side.

An implementation may be able to handle lists mixing constant range expressions and
individual values without having to store all the values in the range expression, but is not
required to.

Conflict with array subscripting

We have designed the syntax of comma-separated lists as selectors as we would like it to
be. But there is an obvious problem: the expression in a subscript selection may be include
the comma operator. That is, currently A[3, 0, 1, 5] is interpreted as A[5]. There are
several solution for this.

1. To add an extra pair of {} enclosing the whole list. This is the most obvious and
straightforward solution.

We applied this while preparing this document. This proved cumbersome, spe-
cially for multidimensional selections, as in A[{{1,2}, {2,3}, {3,3}}]. Mandating
them just for one-dimension selections is not possible for then a selection like
A[{1,2}] becomes ambiguous. It also goes against common practice everywhere that
a comma-separated list enclosed in some brackets represents a list of selected ele-
ments (the list is already enclosed by the [] brackets).

2. To let , inside the [] operator be interpreted like the comma operator or like the
comma of a direct selection list according to some pragma or other directive specify-
ing the version of the language, as has been proposed.

We think the definition of such a directive would be very problematic. What if an
identifier is declared in “new” mode using some new feature and then used in the
“old” mode, for example? However, a directive that changes the way the program is
translated only for selected features is easy. For example

#STDC_feature#STDC_feature#STDC_features 29

If the value is < 29 the comma is interpreted as the comma operator and direct
selections other than a CRE are not allowed; otherwise, the expression k in [k] for
the subscripting operator is a conditional expression. this way old files can be com-
piled with #STDC_feature#STDC_feature#STDC_features set to some value < 29 and new code with it set to 29.

In addition it can change the way I is treated, or if 0[p] is allowed, for example.
This directive would have an implementation predefined value ≤ 29 (that com-

pilers would control via an invocation flag)

3. A directive specific for this situation. For example,

#STDC_feature#STDC_feature#STDC_features ARRAY_COMMA 0

4. Use the __STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS__ macro. If it is defined and defined to 1, the
comma stands for list separator.

57

5. Let it be implementation defined but not tied to the __STDC_ARRAY___STDC_ARRAY___STDC_ARRAY_SELECTIONS__SELECTIONS__SELECTIONS__
macro.

The fourth and fifth solutions have the drawback compared with the two previous ones
that the state cannot be changed within the translation unit. But this may be felt like an ad-
vantage rather than a drawback. Likewise, the directive from solutions 2 and 3 might be
limited to apply to whole translation units. The introduction of the directive from solu-
tion 2 is being discussed presently.

Since an implementation supporting direct selections must also support stepped selec-
tions, we could have taken the value of the macro __STDC_ARRSEL_STEPPED____STDC_ARRSEL_STEPPED____STDC_ARRSEL_STEPPED__ in solu-
tion 4 as the watershed. But the purpose is not to push comma operators inside array sub-
scripting as far as possible when using array selections, but rather the opposite. That if
somebody wants to use array selectors cannot place a comma operator inside an array sub-
script seems a mild requisite and even desirable.

A comma operator only makes sense if the first operand has side effects, which are not
allowed in direct array selectors. Hence, in solution 4, compilation with __STDC_AR-__STDC_AR-__STDC_AR-
RAY_SELECTIONS__RAY_SELECTIONS__RAY_SELECTIONS__ defined to 1 will make those expressions trigger an error (and simil-
arly for solutions 2, 3 and 5) The safest path towards the elimination of those expressions
is as follows: first, the code is compiled without array selections (using any version of C
older than C2y or using C2y with a switch to turn array selections off) and asking the com-
piler to issue a warning for discarded expressions with no effect. This will detect dummy
comma operators. These are likely to be bugs in the code. These are fixed. Then the code is
compiled with array selections. Comma expressions within [] with side effects will cause a
compilation error. For these, the subscript is enclosed in (). E.g., [(p++,n)].

In the event that direct selections get added by some implementation, that implementa-
tion will likely provide a command line switch to interpret the comma as list separator.
This is the fifth solution. Likewise, when that switch is off, it should issue warnings for
any comma operator inside [] which is not hidden by braces (i.e., when the expression in-
side [] is proper comma expression). This may be the practical way towards commas in-
side []. It is unlikely that users will not want to get rid of the extra {}, and that command-
line switch will thence get standardised as an implementation defined behaviour (for
which a testing macro will be provided).

Furthermore, array subscripting including a comma operator is extremely unlikely to
appear in header files; there may be none at all, and there will be no problem in compiling
in the new mode including files from older libraries (plus, do not forget, that a compiler
will very likely provide a warning for commas within [] when compiling in the old mode).

Example of use of indexed selection
Let us suppose we have a large matrix of size n × n. Within it, a small shape moves:

The shape operates on the elements of the matrix it lies onto.
We begin by defining the pixels that form the shape with respect to its upper left

corner:

58

const intconst intconst int Sh[][2]={ {0,1},{0,2},
 {1,0},{1,1},{1,2},{1,3},
 {2,0},{2,1},{2,2},{2,3},
 {0,1},{0,2}
 };

Next, suppose we have some value n giving the size of the matrix and an initial posi-
tion, at r0, c0 within that matrix:

unsigned charunsigned charunsigned char A[n][n];
int int int pos[2]={r0,c0}; //Position: row and column

Finally, we move the shape along a diagonal of slope -1/2 two hundred times, perform-
ing a certain operation at each position:

forforfor(intintint k=200; k!=0; k--){
 A[pos[]+Sh[:]] ^= 0x3F;
 pos[0]++, pos[1]+=2
 A[pos[]+Sh[:]] ^= 0x3F;
}

Note that here pos[]+Sh[:] is defined by the general rule for the 3rd case in “Arrays with
selections of different depth”.

11 OUR FINAL CHOICE FOR THE TYPE

As can be seen in the forgoing pages, the short interpretation always gives simpler se-
mantics, but has the problem of the very different memory layout of an array with selec-
tion as compared to the corresponding array without selection. In the long interpretation,
on the contrary, the memory layout is the same, which hints at that being the right type;
the difference being only that some elements are selected, other not. But that is not true,
as shown by the next section. For this reason; the situation of selection from an array of
pointers; the value which we like _Lengthof_Lengthof_Lengthof to yield for these arrays, and that it presents
itself to simpler solutions, we finally chose the short interpretation.

Ignored elements are not padding
In the long interpretation, ignored (not selected) elements seemingly act as padding when
the array is operated:

floatfloatfloat A[10];
A[0:4:3]=2;
{s, i, i, s, i, i, s, i, i, s}

Only selected elements are operated, ignored elements are not.
But there is a difference: padding bytes need not be copied onto; ignored elements

must not be copied onto. In doing so, elements from the full array would be modified which
cannot be modified. Thus, those ignored elements act as bytes outside the operated object,
whose modification would change some other object.

59

The consideration of the ignored elements as ignored; i.e., belonging to the array but
omitted from the operation about to take place, can still be kept notwithstanding the previ-
ous analysis, but we prefer to consider those bytes as being outside the object.

Selection from an array of pointers
As in

intintint *B[10];
B[2:4]; //Array of four pointers
B[2:4][0:3]; //[a,b,c] [a’,b’,c’] [a’’,b’’,c’’] [a’’’,b’’’,c’’’]

The last object is impossible to accommodate in the long interpretation; it cannot be given
a type. The extension needed to give a type to that expression is precisely the short inter-
pretation: it is an array of four elements, even though they may be stored apart from one
another in memory.

Broken vs. potentially broken
Having chosen the short interpretation, broken arrays must be given a different type than
plain arrays, since the memory layout is different, and, e.g., memcpy will not copy one onto
the other. That difference is taken into account by a qualifier: broken. That qualifier is not
introduced in the type system: no identifier can be declared with that type, no pointer to
an object of that type can be formed and broken objects; i.e., expressions having as type a
broken array (which are necessarily lvalues) are not allowed in typeoftypeoftypeof. Since, further,
qualifiers are discarded upon lvalue conversion, omitting the mention that these arrays are
broken would not change nothing in the semantics of any expression. The term is intro-
duced to keep the type system consistent.

Now, should any array with selection, or any one with a >1-dimensional selection or a
[B:L:s] selection where s is not an ICE with value 1 be called “broken”, or only those ac-
tually broken? In the long interpretation it was clear that the term could only apply to
those actually broken, since that is the meaning it conveys in that interpretation (for there
it is not a qualifier); e.g., only unbroken arrays are allowed in sizeof, in that interpretation.

In the short interpretation the situation is different. Consider the expressions

A[0:8:s];
A[:][0:l];

These expressions are broken arrays or not according to the runtime value of s and l re-
spectively. Attaching the qualifier only to those actually broken would mean that the type
of an expression cannot be determined during translation. But the qualifier has not been
introduced in the type system, as explained above, and an implementation can ignore it
completely, as if it didn’t exist. A translator need only keep track of the selection carried by
an array, irrespective of how the standard chooses to call it. The only place it could be no-
ticeable is as operand to typeoftypeoftypeof, and there arrays with nonempty selections are not al-
lowed, whether broken or not. For these reasons we prefer to phrase the text in a way that
only actually broken arrays, which in the short interpretation means that theirm memory
layout is not the same as that of a plain array, are deemed broken. If the qualifier were in-
troduced in the system and the address to broken array taken, brokenbrokenbroken T* should mean
pointer to potentially broken array, just as constconstconst T* means pointer to potentially const
object.

60

Consequences for implementations
Impelementers can ignore the broken qualifier altogether. The type of a broken array can-
not escape from the expression designating the array itself. To say that this type is quali-
fied is needed for the consistency of the type system and the standard in various parts, but
the only thing that an implementation needs to care about is the memory layout; i.e.,
where is each of the selected elements, in order to retrieve them for the range operation of
which it is part, in case it is part of such an operation.

12 FURTHER EXTENSIONS

The extensions treated in this section arise naturally. There inclusion here does not mean
that the author is in favour of their eventual adoption.

A[B:-L]
One may expect implementations to allow a negative L in A[B:L], write it A[B:-L], as a
synonym of A[B:L:-1]. If so, this could be incorporated to the standard in the future.

Range selection constraint related recommended practice
Constraints

Recommended practice

For the form [B:L:s] in case the postfix expression is a complete array which is not a
variable length array, L is an integer constant expression and s is not, implementations are
encouraged to produce a diagnostic message in case L is greater than the length of the ar-
ray or, if also B is an integer constant expression, both B+L and B-L fall outside the range
of valid indices for the array. These expressions can only have defined behavior if s evalu-
ates to zero.

The rationale for this is that a step which is not an integer constant expression likely
takes different values on different evaluations. Also, that a range selection which can only
be valid if s is zero should be written with a literal 0 in place of s, or at most an i.c.e with
value 0.

Relaxing the UB of overlapping in assignments
4 If the left operand of an assignment expression is an array, for each singleton i of it in

which a value is stored let C(i) be the set of singletons that need to be read, in the expres-
sion at the left of the assignment operator, in order to compute the value to store in i. If
C(i) includes another singleton of the array which also has a value stored in it by the as-
signment, the behavior is undefined. (Option 1) the object representation of i becomes un-
specified.

Or even more relaxed:

(Option 2) ... another singleton j ... the object representation read for j for the computation
of i is unspecified.

61

The latter is more relaxed as shown by the following examples:

EXAMPLE
unsigned charunsigned charunsigned char A[10];
A[0:9] = 3 + 0*A[1:9]; //A[0:9] becomes unspecified in option 1. But in

//option 2 the unspecified values read from A[1:8]
//are irrelevant for result of the operation.

After the following expression

A[0:9] += A[1:9];

all values in the range A[0:8] become unspecified while A[8] is well defined, in both op-
tions. Also, after

A[2] = A[1] = A[0] = 1;
A[0:2] = A[1:2];

the value of A[0] becomes unspecified, for while the expression does not modify A[1] a
value is stored in it. A[0] equals 1 in both options.

EXAMPLE The unspecified value read for j may lead to undefined behavior:

intintint A[3]:
A[0]=0; A[1]=1; A[2]=2;
A[0:2] /= A[1:2];

Here, in option 2, the value read for A[1] for the computation A[0]/A[1] is unspecified,
and if it is zero the behavior is undefined. Option 1 here is more restricted towards the pos-
sible outcome: A[0] becomes unspecified but the program does not have undefined beha-
vior.

We prefer option 1, which does not force the translator to compute a correct value
when overlapping occurs in cases like A[0:9] = 3 + 0*A[1:9] above. But the last ex-
ample shows that, if option 1 is chosen, lee in the reading of j is also needed, so as not to
force a defined behavior (though resulting in an unspecified value) when, e. g., division by
zero may occur. Considering this, the text we propose combines the freedom given to the
compiler of both options (i.e., is the strictest for the programmer):

the object representation read for j for the computation of i is unspecified and the object
representation of i becomes unspecified.

We like this constraint in the possible behaviour of the program, with respect to the
current undefined behavior of this proposal, for it removes an unnecessary u. b., limiting it
to an unspecified value in most cases, which is what the emitted instructions could pos-
sibly do. It may be that an allowance for unspecified representation of all the computed
elements, not just those involved in the overlapping, is necessary. Implementation experi-
ence will tell.

Relaxing the restriction for overlapping
The restriction for overlapping can be partly lifted, if it be so desired, to allow either or

both of

A[0:9] = 2*A[3];

62

A[0:9] = f(A);

A[B:L][B’:L’] when the elements of A[B:L] are pointers
In a selection of the form A[B:L] where A is not an array with selection the resulting ob-
ject is the same whether A has array or pointer type, both in its memory layout and in its
type:

intintint A[10], *B;
A[2:5]; B[2:5]; //Both are an array of 5 intintint.

But if A is itself an array with selection the situation is different:

intintint A[10][6], *B[10];
A[2:4][0:3]; //[a,b,c,i,i,i, a’,b’,c’,i,i,i, a’’,b’’,c’’,i,i,i, a’’’,b’’’,c’’’,i,i,i]
B[2:4]; //Array of four pointers
B[2:4][0:3]; //[a,b,c] [a’,b’,c’] [a’’,b’’,c’’] [a’’’,b’’’,c’’’]

Here i represents an ignored (not selected) element. In the last line we’ve got four arrays,
at the addresses pointed to by B[2], B[3], B[4] and B[5]. The memory layout is very dif-
ferent form A[2:4][0:3] and the four arrays may not even lie in the same storage in-
stance.

Allowing constructions like the latter might add a substantial burden to implementers.
It seems these would have few use cases. It may on the other hand seem useful. Actually,
both perceptions are not contradictory. We think it is better to have implementations first
implement multidimensional selections just on multidimensional arrays, then allow or not
this further extension based on their feedback.

Long interpretation
The definition of a type for this kind of selection before lvalue conversion is difficult. We
may say it is an “array with selection of sparse type”. Then make the type of any instance
of this incompatible with any other type, including other sparse selections, and insert ap-
propriate wording for the assignment and ++, -- operators. Obviously, these cannot be op-
erands to sizeofsizeofsizeof and should not be to typeoftypeoftypeof.

Short interpretation
The type and value returned by sizeofsizeofsizeof are the same as for any other broken array.

Selections [], [:] and [::]

The selection [:] has no meaning when the element it applies to is a pointer. This is for-
bidden in the wording and needs no further mention for this case.

[] has no effect, as when applied to any array already carrying a selection.
[::] seems even more meaningless than [:], but it does have meaning. That selection

means to select all dimensions up to the singletons. Pointers are singletons, so it cannot se-
lect any further; its meaning is the same when applied to an array with selection where the
selection has already reached the singletons, whether the singletons are of pointer type or
not. We allow it when there are no more dimensions from which to select, an pointers
make no difference in this respect:

floatfloatfloat A[9][9], *B[9][9];
A[::], A[:][::], A[:][:][::];
B[::], B[:][::], B[:][:][::];

63

The first selection from each line selects two dimensions; the second one, one; the
third one, none ([::] has no effect).

typeof, sizeof, _Unselect() and _Value()
Long interpretation
The restrictions which apply to arrays with selection in typeof and sizeof have been justi-
fied. We’d rather add _Unselect()_Unselect()_Unselect() and _Value()_Value()_Value() operators than lift those restrictions. It
must be clear whether the user wants the type / size of the whole matrix or just that of the
selection:

intintint A[10][10], B[20], n;
typeoftypeoftypeof(_Unselect_Unselect_Unselect(A[2:3][0:5])) // Clear. typeoftypeoftypeof(A[2:3]). intintint[3][10]
typeoftypeoftypeof(_Value_Value_Value(A[2:3][0:5])) // Clear. typeoftypeoftypeof(intintint[3][5])
typeoftypeoftypeof(A[2:3][0:5]) // ?
typeoftypeoftypeof(_Unselect_Unselect_Unselect(B[2:n:4])) // typeoftypeoftypeof(B[2:1+4*(n-1)]). intintint[4n-3]
typeoftypeoftypeof(_Value_Value_Value(B[2:n:4])) // typeoftypeoftypeof(intintint[4])
typeoftypeoftypeof(B[2:n:4]) // ?

_Unselect()_Unselect()_Unselect() makes visible whether margins are retained or not:

typeoftypeoftypeof(_Unselect_Unselect_Unselect(A[2:3][0:5][0])) // intintint[10], if margins are kept.
typeoftypeoftypeof(_Unselect_Unselect_Unselect(A[2:3][0:5][0])) // intintint[5], if margins are not kept.

When used for reselecting, recovering all the elements of the full array is probably not
a good choice:

#define#define#define invert3(x) _Unselect_Unselect_Unselect(x)[0:3] = 1/_Unselect_Unselect_Unselect(x)[0:3]

The macro probably does not work as intended for broken arrays. It does not select the
first three elements from x, but the first three of the corresponding full array

Short interpretation
sizeof is unambiguous, as is typeof_unqualtypeof_unqualtypeof_unqual. typeoftypeoftypeof should return the qualified type in
the event that the selected qualifier is added to the language, and in the meantime
(forever?) arrays with selections are not allowed there. Therefore, _Value()_Value()_Value() is of no use
for these operands.

_Unselect()_Unselect()_Unselect() cannot be applied to a broken lvalue in the short interpretation, because
the memory layout of the array is different than what the result of _Unselect()_Unselect()_Unselect() should
be:

#define#define#define invert3(x) _Unselect_Unselect_Unselect(x)[0:3] = 1/_Unselect_Unselect_Unselect(x)[0:3]

The second _Unselect()_Unselect()_Unselect() could be fixed by preceding it with _Value()_Value()_Value(): _Unselect_Unselect_Unselect
(_Value_Value_Value(x)), but that is not possible for the first one.

The solution is to split the property of carrying a selection from the brokenness quali-
fier. Thus, _Unselect()_Unselect()_Unselect() applied to an lvalue would remove the selection but the resulting
arrays would still be broken-qualified if it was so.

_Unselect()_Unselect()_Unselect() makes translation more difficult. In the absence of it, the translator
knows it can translate selections into for loops. An un-selection complicates it by making a
subsequent selection apply to the already broken array:

64

_Unselect_Unselect_Unselect(A[0:8:3])[2:4]+B[0:4] //Operates A[6], [9], [12] [15].

Functions taking and returning arrays
Now that there is a way of preventing a matrix to decay to a pointer, functions may be de-
clared to take arrays as argument, as in the following example:

doubledoubledouble determinant3(doubledoubledouble A[:3][3]){
doubledoubledouble d;
/* ... */
returnreturnreturn d;

}

doubledoubledouble M[3][3], N[6][6];
determinant3(M[]);
determinant3(N[0:3:2][0:3:2]);

The obvious choice for the parameter and, we would say, the right choice, is doubledoubledouble
A[3][3], which we all know is not possible.

As for the returned value, now arrays make sense because they can be assigned to:

typedef doubletypedef doubletypedef double dbl33[3][3];

dbl33 invert3(doubledoubledouble A[:3][3]){
/* Compute A-1 and store it in A */
returnreturnreturn A;

}

doubledoubledouble M[3][3], N[3][3];
N= invert3(M[]);

The declaration can be written without the need of a typeoftypeoftypeof following the rule that a
declaration mimics the use:

doubledoubledouble invert3(doubledoubledouble A[:3][3]) [3][3];

We would like the parameter as well to be declared by means of the defined type:

dbl33 invert3(dbl33 A);

but as we noted this is not possible.

Functions acting as range operators
Suppose we want to compute the square root of all the elements on the main diagonal of a
matrix. Writing

sqrt(N[0:n:n+1])

obviously doesn’t work. What is needed is a way of saying that the function has to act on

65

each of the selected values. We thought of the following syntax for it:

sqrt[](N[0:n:n+1])

The semantics is that [] after the function name means that there are as many invoca-
tions of the function as there are selected elements in its arguments which are arrays with
selection (the selections in the different arguments must match). All other arguments get
evaluated once. Examples with more than one argument:

atan2[](Y[0:n],X[0:n])
atan2[](A[1][0:n],2.5)

The result is an array with selection; that is, the expression has array type and carries
a selection. The selection is of the form of that of the arguments (in the long interpreta-
tion, after lvalue conversion), which must be identical for all of them, and the type of the
singletons that of the return value of the function. This array can be used anywhere an ar-
ray with selection can:

Y[:] = log[](tan[](0.5*F[:]))
Σ[:] = sqrt[](N[0:n:n+1])
A[::] = exp[](Ω[::])

There is no concurrence with the use of the [] operator as empty selector, since the
identifier used to call a function may be a function pointer but not an array of function
pointers. For such an identifier as the latter [] retains it normal meaning, and a list of ar-
guments cannot follow.

Address to broken arrays. The broken qualifier
This is a substantial extension.

Suppose we take the address of a broken array:

intintint A[15], B[6][8];
intintint (*p)[brokenbrokenbroken 5]= &A[0:5:3];
intintint (*q)[brokenbrokenbroken 6][4]= &B[:][0:4];
intintint (*r)[brokenbrokenbroken 6][brokenbrokenbroken 4]= &B[:][0:4:2];

We need the qualifiers, in some form, because p, q and r do not point to “normal” arrays of
integers. For example, A[0:5:3][1] is not at the address following A[0:5:3][0].

If the address of the broken arrays cannot be taken, that broken object can get
nowhere, and the translator only needs to know its layout for the translation of the expres-
sion where it appears. By taking its address and assigning it to an identifier, now that ad-
dress may be passed around. The following should not be allowed:

intintint (*pp)[5] = p;

since (*pp)[1] will not access the right address. If we allow the pointer to be copied and
passed to functions, the full introduction of the qualifier in the type system is unavoidable.

If the brokenbrokenbroken qualifier is introduced it will apply to arrays, not to pointers, but is most
meaningful when using pointers to broken arrays:

intintint (*p)[brokenbrokenbroken 6]= &A[0:6:3];

66

f(p);

Different brokenbrokenbroken-qualified arrays will in general have different layouts. Therefore, the
function f, when receiving the argument p, needs to get with it the information of how the
broken array is actually broken. Of course, the six elements could, in particular, be stored
consecutively, so brokenbrokenbroken should mean potentially broken.

The amount of information pointers to broken arrays need to carry means that they
cannot be represented as the corresponding unqualified pointer. A possibility is that the
pointer points to a block of memory holding the information of how the array is stored in
memory and, in particular, the address of it:

This way the size of the pointer is still that of a normal pointer.
Broken-qualified arrays should not decay to pointers. And since broken-qualified

means potentially broken, brokenbrokenbroken could be called selectedselectedselected instead. That would make po-
tentially-broken and carrying-a-selection synonyms. But we may keep the two concepts
split, so that a broken-qualified array need not necessarily carry a selection:

intintint B[6][8];
intintint (*q)[brokenbrokenbroken 6][4]= &B[:][0:4:2];
(*q)[0:2]; //B[0:2][0:4]
q[0][1:2]; //B[0][2,4]

In this design, taking the address forgets the selection. This is the most versatile beha-
viour.

Upward propagation of broken

As we already observed, in the short interpretation, if an array’s elements are broken so
has to be considered the array itself. The following type names therefore denote the same
type:

intintint (*)[6][brokenbrokenbroken 4]
intintint (*)[brokenbrokenbroken 6][brokenbrokenbroken 4]

If these types were to be different, the first one would imply that the six elements are
stored in order. But to know the position of the next element knowing the position in
memory of the four pieces that compose the first element requires remembering the ori-
ginal full array, and this is the long interpretation. E.g.,

intintint A[6][12], B[6][7];
&A[:][0:4:2];
&B[:][0:4:2];

67

Since A[:][0:4:2] and B[:][0:4:2] have different layouts even if A[0] and B[0] are
equal, only one of them, and of the infinte many possibilitys having the same layout of its
[0]-th element, could be the one with type intintint [6][brokenbrokenbroken 4]. We could say that it is
the one where the last element in memory from the [0]-th element immediately precedes
the first element in memory of the [1]-th element, but it seems there is no reason for sig-
nalling out that one in particular.

Collapsed arrays

Broken-qualified means potentially broken. Thus, A[1] may not be at the address just fol-
lowing A[0]. But in many cases it will be true that A[1] is not at the same address as
A[0]. Since that is not guaranteed in general in a broken array, it might be good to split
that property to a separate qualifier: sharedsharedshared.

doubledoubledouble func(intintint (*A)[brokenbrokenbroken 6]){
/* ... */

 (*A)[k]= a;
 (*A)[k-1]= b;
}

In this function body, the compiler can be sure that reordering of the two assignments
is safe, since the array cannot be collapsed. On the other side,

doubledoubledouble func(intintint (*A)[sharedsharedshared 6]){
/* ... */

 A[k]= a;
 A[k-1]= b;
}

Now reordering is not possible.
sharedsharedshared means, in particular that the layout of the array’s elements is not like that of a

plain array. Therefore, sharedsharedshared implies brokenbrokenbroken.
The first situation that can give rise to a shared array is a selection with step zero,

where all elements share the same space in memory. For this reason we first called the at-
tribute “collapsed”. But irregular selection (indexed and direct ones) can create arrays
where some but not all of the elements share the space in memory, so “shared” seemed
better.

Pointer hierarchy

A broken-qualified array may or may not be broken; a regular array can never be broken.
Thus, a pointer-to-broken is a supertype of a pointer-to-plain, in the language of the pro-
posal “Enhanced type variance”. Likewise, a pointer-to-collapsed is a supertype of a
pointer-to-plain.

13 FURTHER EDITORIAL FIXES

6.5.16 Conditional operator

The paragraph on the determination of the common type when both operands are pointers

68

or nullptr_tnullptr_tnullptr_t or a null pointer constant (p. 6 currently, p. 9 in our proposal) is too convo-
luted as a result, we presume, of incremental editing, as it often happens in the standard.
We have simplified it. No semantic change is intended.

6.5.17 Assignment operators
The paragraph restricting the overlapping of the assignee with the read object had to be
modified to make it apply only to singletons, and this required some minor adjustments to
the sentence. We have modified it further so as no to speak of the type of an object, but of
the expression used to access it. There is a proviso near the beginning of the standard to
make “the type of an object” mean that of the identifier used to access it, but since here we
are referring to an object referred to by two identifiers (the one at the left of the assign-
ment and the one at the right), it seems that a direct mention of the type of the identifiers
is clearer:

If the left operand is not an array and the value being stored in it is read from an-
other object that overlaps in any way its storage, then the two objects shall occupy
exactly the same storage and the type of the expression used to access the object
read shall be a qualified or unqualified version of a type compatible to that of the
left operand; otherwise, the behavior is undefined.

6.5.17 Assignment operators (again)
The paragraph restricting the overlapping of the assignee with the read object is placed un-
der “simple assignments” (it is par. 3), while it applies to any kind of assignment. It is true
that compound assignments are described as equivalent to a certain simple assignment,
but we feel it would be clearer if the paragraph were “promoted” to assignment operators
in general.

Our proposal adjoins one paragraph and several examples to that paragraph 3, and
those should be moved together with it if it were moved. We have not done so.

69

14 WORDING

Here text is provided for empty and range selections. Indexed and direct selection are not
considered. The terms range operation and depth of selection were finally not introduced
because they did not seem necessary for the wording. The latter would simplify the word-
ing in just one place: the phrasing of a constraint for assignment operators.

Blue text is new text, green one is changed text, gray text is to be removed. Dark blue
text is new text for the option a zero step is allowed, dark yellow is new text for the option
a zero step is not allowed. We noted that we do not consider this latter option.

Margin notes are comments to the wording but not part of it. Within them, A[:] stands
for an array with nonempty selection; A[:]s for an array carrying a selection of singletons;
B for an array with no selection or empty selection, and s for a singleton.

6.2.5 Types

27 An object or value which is not of array type is called a singleton. If the element type of an
array is not an array type, the elements of the array are its singletons. If the element type
is an array type, the singletons of the array are those of its elements.

6.3.3.1 Lvalues, arrays, and function designators

1 An lvalue is an expression with an array type or a complete object type that potentially des-
ignates an object;54) if an lvalue does not designate an object when it is evaluated, the be-
havior is undefined. When an object is said to have a particular type, the type is specified
by the lvalue used to designate the object.

2 A modifiable lvalue is an lvalue that either:

— Does not have array type, does not have an incomplete type, does not have a const-
qualified type, and if it is a structure or union, does not have any member (including, re-
cursively, any member or element of all contained aggregates or unions) with a const-
qualified type; or

— has array type and its singletons are modifiable lvalues

3 Except when it is the operand of the sizeofsizeofsizeof operator, or the typeof operators, the unary &
operator, the ++ operator, the -- operator, or the left operand of the . operator or an as-
signment operator, an lvalue that does not have array type is converted to the value stored
in the designated object (and is no longer an lvalue); this is called lvalue conversion. If the
lvalue has qualified type, the value has the unqualified version of the type of the lvalue; ad-
ditionally, if the lvalue has atomic type, the value has the non-atomic version of the type of
the lvalue; otherwise, the value has the type of the lvalue.

4 An lvalue which is an array with selection undergoes lvalue conversion in the same con-
texts as singleton lvalues. The result is an array with the same selection and with its sin-
gletons having undergone lvalue conversion as described above.

5 EXAMPLE
int int int A[6][4];;;
const intconst intconst int B[10][10];
A[:][:] = B[2:6][0:4];

When the expression B[2:6][0:4] undergoes lvalue conversion the result is an array of

“with its
singletons”
instead of
“with its se-
lected ele-
ments” be-
cause the
selected ele-
ments need
not be
singletons
and “de-
scribed
above” is
only for
singletons.

70

type intintint[6][4] where each singleton results from the lvalue conversion of the corre-
sponding singleton in B[2:6][0:4].

6 If an lvalue (that does have array type) designates an object of automatic storage duration
that never had its address taken, and that object is uninitialized (not declared with an ini-
tializer and no assignment to it has been performed prior to use) when it undergoes lvalue
conversion, the behavior is undefined. An address of an object is taken by application of
the address operator to an lvalue designating the object, by being an element of an array
that was designated by an expression that is converted to a pointer as described below, or
by being a member of a structure or union object whose address is taken.

7 Except when it is the operand of the sizeofsizeofsizeof operator, or the _Lengthof_Lengthof_Lengthof operator, or the
typeof operators, or the unary & operator or one of the two expressions of an array sub-
scripting operator, or the left operand of a range selection operator, or the left operand of
an assignment, or is a string literal used to initialize an array, an expression that has type
“array of type” and the array does not carry a selection is converted to an expression with
type “pointer to type” that points to the initial element of the array object and is not an
lvalue. If the array object has register storage class, the behavior is implementation-de-
fined.

8 [...]

Forward references: address and indirection operators (6.5.5.3), assignment operators
(6.5.17), common definitions <stddef.h> (7.21), initialization (6.7.11), array subscripting
(6.5.3.2), range selection (6.5.3.3), postfix increment and decrement operators (6.5.4.6),
prefix increment and decrement operators (6.5.5.2), the sizeofsizeofsizeof and alignofalignofalignof operators
(6.5.5.5), structure and union members (6.5.4.4).

6.5 Expressions

6.5.2 Arrays with selection as operators

Constraint

1 For the multiplicative, additive, bitwise shift, inclusive or, exclusive or and ‘and’, equality,
relational and assignment operators, if the two operands are arrays with selection then: If
the selections they carry are nonempty and their lengths are given by integer constant ex-
pressions, these lengths shall be the same. If the innermost selected elements of both oper-
ands are arrays, the number of dimensions of the latter, considered as multidimensional
arrays, shall be the same; for these arrays, if for any dimension the length in one and the
other operand is given by an integer constant expression, they shall be the same. Excepting
relational and equality operators, if one of the operand carries a selection of singletons
(i.e., with selection in as many dimensions as the array has), so shall the other.

Semantics

2 If the two operands of the operators listed in the constraint are arrays carrying a non-
empty selection their lengths shall be the same. The expression is an array of that length,
with its elements selected, where each element is the result of operating the corresponding
element from the first operand with the corresponding element from the second operand.
For this operation, if the elements of any of the operands are arrays with no further selec-
tion they are treated as if the carried an empty selection (that is, they are not converted to
pointers).

3 For the same operands as in the previous paragraph, if one operands is an array carrying a
selection of singletons , and the other operand is a singleton or an array which is converted

A[:] op A[:]

A[:]s op s

71

to a pointer, in which case the latter pointer is a singleton, the expression is an array with
the same dimensions as the operand which is an array with selection, with its elements se-
lected, each element being the result of operating the corresponding element from the ar-
ray with selection with the other operand, according to the semantics described for the op-
erator for operands which are singletons. This other operand is evaluated only once.

4 For the same operators as above with the exception of relational operators, if one operand
is an array without selection which is not converted to a pointer (e.g., as a result of the ap-
plication of the rule in p. 2) or an array with selection where the innermost selected ele-
ments are of array type, so shall be the other operand, and the innermost selected ele-
ments from one and the other operand (or the operand itself if it does not carry a selec-
tion) shall be arrays with the same dimensions (considered as multidimensional array if
their element type is an array type). In this case, if one of the operands carries no selection
or an empty selection, let E be the other operand. For the operators considered with the
further exception of equality operators, the result is an array with the same dimensions
and selection as E and where the innermost selected elements are the result of operating
each singleton of each innermost selected element from E with the corresponding singleton
of the other operand; each singleton of this latter operand is evaluated only once.

5 Whenever an array has each of its elements operated with the other operand, or with a cor-
responding element of the other operand, the order in which the operations are performed
is unspecified.

6 Whenever an array has each of its elements operated, if none of the individual operations
would raise a certain floating-point exception, that exception is not raised. If any of the op-
erations would raise it, it is implementation defined whether the exception is raised or not.
The corresponding status flag is set or not accordingly.

7 EXAMPLE 1
shortshortshort A[12], B[12];
intintint C[8][12][4], D[8][10][2], b;
B[0:6] = A[0:6] + A[6:6];
D[:][0:6][:] = C[:][0:6][0:2] + C[:][6:6][0:2];

In the expression A[0:6] + A[6:6] each of the operands is an array of six elements carry-
ing a selection. The expression is therefore an array of type intintint[6] with its elements se-
lected and whose values are the sums of the two arrays. The type of the assignment expres-
sion of which it is part is also intintint[6], as a result of the lvalue conversion of B[0:6]. In the
expression C[:][0:6][0:2] + C[:][6:6][0:2], each operand as well as the expression
itself and the assignment expression of which it is part are of type intintint[8][6][2] and
carry a three-dimensional selection. The operated elements are C[i][j][k] + C[i] [6+j]
[k].

8 EXAMPLE 2
floatfloatfloat A[n], B[n][n], C[n];
A[:] = B[:][:] * C[:];

The rule in p. 2 applies to B[:][:] * C[:], yielding B[i][:] * C[i]. Each of these is the
multiplication of an array with singletons selected, B[i], and a singleton, C[i]. Therefore,
the rule of p. 3 applies to it; the result of each operation is the array B[i][j]*C[i], with
0≤j≤n, where n is the value to which n evaluates at the declaration, and that of the multi-
plication expression is the n × n array B[i][j]*C[i] (multiplication of B by rows).

9 EXAMPLE 3
floatfloatfloat A[n][m][5], B[n][5], C[5], D[m][5];

A[:] op B
A op B

72

B[:] *= C[];
A[:] *= D[];
A[:][:] *= B[:][];

The rule in p. 4 applies to B[:]*=C[], whereby each B[i][j] is multiplied by C[j] (multi-
plication of B by columns). By the same rule, each A[i][j][k] in the next statement is mul-
tiplied by D[j][k]. In the third statement, application of the rule of p. 2 yields that each
A[i] is multiplied by B[i]; each of these multiplications is like that of B[:]*=C[] (with m
in place of n).

10 EXAMPLE 4 The code
intintint A[10][10];
A[:] + 1;

has undefined behavior. For while A[0] + 1 through A[9] + 1 would be valid, when
these operations are part of a range operation as in A[:] + 1, each A[i] is not converted
to a pointer and there is no semantics defined for the addition of an array and an integer.

6.5.4 Postfix operators

6.5.4.1 General

Syntax

 postfix-expression:
primary-expression
postfix-expression [[[expression]]]
postfix-expression [[[]]]
postfix-expression range-selector
postfix-expression (((argument-expression-listopt)))
postfix-expression ... identifier
postfix-expression ->->-> identifier
postfix-expression ++++++
postfix-expression ------
compound-literal

 argument-expression-list:
assignment-expression
assignment-expression-list , , , assignment-expression

 range-selector:
[: :[: :[: :opt]]]
[[[conditional-expression ::: conditional-expression]]]
[[[conditional-expression ::: conditional-expression ::: conditional-expression]]]

6.5.4.2 Array subscripting

The text of this section is to be that of the (hopefully) eventually approved proposal “Array
subscripting without decay”.

6 EXAMPLE 2
intintint x[6];
x[2:3][0]; // Designates the element x[2]

73

6.5.4.3 Array selection

Description

1 An empty pair of brackets following a postfix expression is an empty selector. A postfix ex-
pression followed by an empty selector is an empty selection. Its intent is to select the ma-
trix as a whole.

2 A postfix expression followed by a construction of the form [:] or [::] or [B:L] or
[B:L:s], where B, L and s are conditional expressions is a range selection, which selects
some elements from the array. The intent of [:] is to select all elements, that of [B:L] to
selects L elements starting from the B-th, that of [B:L:s] to select the elements at posi-
tions B, B+s ... B+(L-1)*s and that of [::] to select all elements from all dimensions. The
order in which the expressions B, L and s are evaluated is unspecified.

3 Empty selectors and range selectors are collectively called array selectors. Empty selec-
tions and range selections are collectively called array selections.

Constraints

4 The conditional expressions shall have integer type. If the postfix expression is not an ar-
ray with selection then: If the array selector has the form [], [:] or [::] the postfix ex-
pression shall be a complete array; if it has any of the other two forms the postfix expres-
sion shall be a pointer to a complete object or an array.

5 If the array selector is of the form [::] and the postfix expression is an array with selec-
tion, the array selector of the latter, and that of its postfix expression if this is an array se-
lection, and so recursively, cannot be [::].

6 In any form of the array selector except [::] and [], if the postfix expression is an array
with selection its innermost selected elements shall be of array type.

7 If L is an integer constant expression it shall be greater than zero. If s is an integer con-
stant expression it shall be nonzero.

8 If the postfix expression is of array type, any of the expressions B and B+L in the form
[B:L], or B and B+(L-1)*s in the form [B:L:s], if an integer constant expression, shall
not be negative. If further the array is complete and is not a variable length array, the
value of those expressions as well as that of L in the form [B:L] if an integer constant ex-
pression, shall be less than l, where l is the length of the array if it does not carry a selec-
tion or the length of each innermost selected element if it carries a selection.

Semantics

9 In the following paragraphs, let b, l and s be the result of evaluating B, L and s respec-
tively. b shall be nonnegative and l shall be greater than zero. No restriction applies in gen-
eral to s; in particular, it may be zero. , and s shall be nonzero.

10 An array with a memory layout different from that of an array without selection will be
called a broken array. A broken array behaves as if it had a brokenness qualifier. This prop-
erty is lost upon lvalue conversion. Different broken arrays that have the same type may
have different memory layouts. Conditions under which an array with selection is broken
are stated in the following paragraphs.

11 If the expression is of the form A[B:L] or A[B:L:s] and A is a pointer or an array which
does not carry a selection, the first form selects the range of l elements starting from the b-
th, the latter counted from zero. In the second form the expression s is called the step, as
well as the value s. It selects the elements A[b], A[b+s] ... A[b+s*(l-1)] (if s is zero it se-
lects A[B] l times). The resulting array is said to carry a selection or to have (a range of) el-

Here is the
restriction
that in
A[R][R’],
A[R] cannot
be an array
of pointers.

74

ements selected. Let type be the type of A[0]. The expression has type “array of type”. It
has length l. If L is an integer constant expression it is an array of known constant length;
otherwise, it is a top-level variable length array. The elements of the resulting array pre-
serve the order of the selection, so that A[b] is the first, A[b+1] or A[b+s] the second and
A[b+l-1] or A[b+s*(l-1)] the last. A selection of the form [B:L:s] where neither l nor s
are 1 is a stepped selection. An array carrying a steped selection is broken.

12 If the expression is of the form A[B:L] or A[B:L:s] and A is an array with a range of ele-
ments selected, and the type of the innermost selected elements is T, then: If T is not an ar-
ray the behavior is undefined. Otherwise, let A have an m-dimensional range of elements
selected, of type T, and T be array of T’. The expression is an array with an (m+1)-dimen-
sional range of elements selected of type T’, obtained by selecting from each element v in
the m-dimensional range the subarray v[B:L] or v[B:L:s], which is as described by the
previous paragraph (v is not an array with selection). Let u represent the innermost arrays
in A that carry a range selection (these arrays’ elements are the v’s), and let lv be the length
of the elements v. If b≠0 or l≠lv the arrays u in A[B:L] or A[B:L:s] are broken.

13 If the elements of an array are broken arrays, the array itself is broken.

14 In an expression of the form A[:], let x represent A if this latter array does not carry a se-
lection, or its innermost selected elements if it does carry a selection. The expression is
equivalent to A[0:l], where l is the length of the array(s) x, except that if (each) x is a top-
level variable length array so is (each of them) in A[:]. (That is, the expression is equiva-
lent to A[0:_Lenghtof_Lenghtof_Lenghtof(x)]).

15 An empty selection is of the form A[]. If A is an array with selection the empty selection
has no effect. Otherwise A is an array without selection and the expression is the same ar-
ray with a 0-dimensional range of elements selected, namely the whole array (one element
selected), and it is said that the array has, or carries, an empty selection. An array with an
empty selection is equivalent for all purposes to the array with no selection, except that it
cannot be converted to a pointer.

16 If the expression is of the form A[::] and A is an n-dimensional array with no selected ele-
ments or, if it has selected elements, the innermost ones of these are n-dimensional arrays,
then: If no array selectors follow the [::], A[::] is equivalent to A[:][:] ... [:], where
there are n [:] selectors; if A is an array with selection n may be zero. If array selectors
follow (none can be of the form [::]) and among these the range selectors are m in num-
ber, A[::] is equivalent to [:][:] ... [:], where there are n-m [:] selectors; n-m may be
zero.

NOTE: As a consequence of the rules expressed above, an array that carries a nonempty se-
lection carries a range selection in a certain number of consecutive dimensions starting
from the outermost one. In addition, an array carrying an m-dimensional selection has all
the elements from its first m dimensions selected.

17 EXAMPLE 1 Consider the array object defined by the declaration
intintint x[3][5];
x[1:2] is an array of 2 × 5 objects and has type intintint[2][5]; it is a subobject of x
and has a one dimensional range of elements selected, each of which is an array of
five singletons of type intintint. x[0:1][:] is the same array and has selections from
both its dimensions, resulting in a two dimensional range of elements selected, each
of which is a singleton of type intintint.

18 EXAMPLE 2 After the declarations
intintint n = 3;

75

intintint x[3][5], y[3][n], z[n];
x[:][0:n] is a broken array. Its type is intintint[3][3] and is a variable length array,
though not a top-level variable length array. x[1:n-2] is a variable length array of
type intintint[n-2][5]; i.e., intintint[1][5]. y[:] and y[:][0:3] both have type
intintint[3][3], but the former is variable length array while the latter is not. z[0:2]
has type array of two intintint. z[n-3:1] has type intintint[1] and is not a broken array.

x[:][1:3] is a broken array. x[:][1:3][0] has type intintint[3], carries a one-dimen-
sional selection and is not broken.

19 EXAMPLE 3
floatfloatfloat A[10], B[10];
A[0:3] + B[9:3:-2];
The result is the array {A[0]+B[9], A[1]+B[6], A[2]+B[3]}

20 EXAMPLE 4
intintint x[3][5], y[6][20];
x[:][0:2] + y[3:3][k:2:-4]; // k is of integer type

Here x[:][0:2] and y[3:3][k:2:-4] are broken arrays of type intintint[3][2]. As op-
erands of the + operator they undergo lvalue conversion and are no longer broken.

21 EXAMPLE 5
intintint x[3][3], y[3];
x[0:1] == y[];
x[0:1] has type intintint[1][3] and has one element selected of type intintint[3], which is
also the type of y[]. The former could also have been written x[0][], which has
type intintint[3] with one element selected of type intintint[3].

22 EXAMPLE 6
intintint A[6][6][6];
A[::]; //Equivalent to A[:][:][:]
A[::][0:3]; //Equivalent to A[:][:][0:3]
A[::][0:3][:]; //Equivalent to A[:][0:3][:]
A[::][]; //Equivalent to A[:][:][:]

6.5.4.6 Postfix increment and decrement operators

Constraints

1 The operand of the postfix increment or decrement operator shall have atomic, qualified or
unqualified arithmetic or pointer type, or be an array with elements selected, with the in-
nermost selected elements of any of those types, and shall be a modifiable lvalue.

Semantics

2 If the left operand is an array with selection it shall not carry a stepped selection where
the step is zero, nor shall its selected elements and so recursively.

3 If the operand is not an array with selection the operated elements is the operand. Other-
wise, it refers to each of the innermost selected elements.

4 The adjustment value is the value used to increment or decrement the value of the operated
elements. If the operated elements have pointer type, the adjustment value has type intintint
and the value 1; if the operated elements have complex type, the adjustment value has the

76

corresponding real type of the operated elements and the value 1; if the operated elements
have decimal floating type, the adjustment value has the same type as the operated ele-
ments, 1 as the numerical value, and 0 as the quantum exponent; otherwise, the adjust-
ment value has the same type as the operated elements and the value 1.

5 The result of the postfix ++ operator is the value of the operand. As a side effect the value
of the operated elements is incremented by the adjustment value. See the discussions of ad-
ditive operators and compound assignment for information on constraints, types, and con-
versions and the effects of operations on pointers. The value computation of the result for
each operated element is sequenced before the side effect of updating the stored value of
the said element. Both operations are indeterminately sequenced with respect to the same
operations on other operated elements. With respect to an indeterminately sequenced func-
tion call, the operation of postfix ++ is a single evaluation. Postfix ++ on an object with
atomic type is a read-modify-write operation on each operated element with memory_or-memory_or-memory_or-
der_seq_cstder_seq_cstder_seq_cst memory semantics.

6 The postfix -- operator is analogous to the postfix ++ operator, except that the value of the
operated elements is decremented by the adjustment value.

6.5.5 Unary operators

6.5.5.2 Prefix increment and decrement operators

Constraints

1 The operand of the prefix increment or decrement operator shall have atomic, qualified or
unqualified arithmetic or pointer type, or be an array with elements selected, with the in-
nermost selected elements of any of those types, and shall be a modifiable lvalue.

Semantics

2 If the left operand is an array with selection it shall not carry a stepped selection where
the step is zero, nor shall its selected elements and so recursively.

3 The value of the operated elements (6.5.4.5) of the prefix ++ operator is incremented. The
result is the new value of the operand after incrementation. The expression ++E is equiva-
lent to (E+=1), where the value 1 is the adjustment value (6.5.4.5). See the discussions of
additive operators and compound assignment for information on constraints, types, side ef-
fects, and conversions and the effects of operations on pointers.

[...]

6.5.5.3 Address and indirection operators

Constraints

1 The operand of the unary & operator shall not be an array carrying a nonempty selection
and shall be either a function designator, the result of an array subscripting operator or a
unary * operator, or an lvalue that designates an object that is not a bit-field. This lvalue
or, in case the operand is the result of an array subscripting operator or a unary * applied
to an lvalue, this latter lvalue, shall not designate an object declared with the register stor-
age-class specifier.

.

[...]

6.5.5.4 Unary arithmetic operators

Constraints

1 If the operand is not an array with selection then: The operand of the unary + or - operator

77

shall have arithmetic type; of the ~ operator, integer type; of the ! operator, scalar type. If
the operand is an array with selection, the innermost selected elements shall have a type
as constrained by the previous sentence.

[...]

5 The result of the logical negation operator ! applied to a singleton is 0 if the value of its
operand compares unequal to 0, 1 if the value of its operand compares equal to 0. The re-
sult has type intintint. The expression !E is equivalent to (0==E).

6.5.5.5 The sizeofsizeofsizeof, alignofalignofalignof and _Lengthof_Lengthof_Lengthof operators

Semantics

4 When sizeofsizeofsizeof is applied to an operand that has type charcharchar, unsigned charunsigned charunsigned char, or signedsignedsigned
charcharchar, (or a qualified version thereof) the result is 1. When applied to an operand that has
array type, the result is the total number of bytes in the array equals the number of ele-
ments of the array times the size of each of its elements (i.e., times the result of sizeof ap-
plied to one of its elements).101) When applied to an operand that has structure or union
type, the result is the total number of bytes in such an object, including internal and trail-
ing padding.

[...]

8 EXAMPLE 2 The following equality always holds for arrays:

sizeofsizeofsizeof(array) = _Lengthof_Lengthof_Lengthof(array)*sizeofsizeofsizeof(array[0])

6.5.6 Cast operators

Constraints

2 One of the following shall hold:

— The type name specifies a void type; or

— the type name specifies an atomic, qualified, or unqualified scalar type and the oper-
and has scalar type or is an array with no selection or carrying a selection of singletons.

— the operand is an array with an empty selection and the type name specifies an array
type with the type of the singletons as an atomic, qualified or unqualified version of a
type compatible to that of the operand’s singletons.

3 If its operand is an array of fixed constant total length carrying an empty selection and the
type name specifies an array of fixed constant total length, the total length of the latter
shall be less than or equal to the total length of the operand.

[...]

Semantics

[...]

6 Preceding an expression by a parenthesized type name converts the value of the expression
to the unqualified, non-atomic version of the named type. This construction is called a
cast.102) If the operand is an array which does not carry a selection, it is first converted to a
pointer and the cast applies to this pointer. If the operand is an array carrying a selection
of singletons the conversion is applied to each of its singletons. A cast that specifies no con-
version has no effect on the type or value of an expression.

7 If the operand is an array with selection then: if the type name specifies an array type, the
total length of this type shall be less than or equal to the total length of the operand and

Length and
not size,
though
since the
singletons’
types are
compatible,
there is no
difference.
Each ele-
ment from
the result
comes from
one element
from the op-
erand.

78

the value of the expression is an array with an empty selection; otherwise the array carries
a selection of singletons and the result is an array with the same dimensions and selection
as its operand and with the type of its singletons the one resulting from the cast applied to
a singleton.

[...]

6.5.7 Multiplicative operators

[...]

Constraints

2 Either operand may be an array with selection. Its singletons must satisfy the constraints
set forth in the following paragraphs.

3 Each of the operands, if not an array with selection, shall have arithmetic type. The oper-
ands of the % operator shall have integer type.

4 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

6.5.8 Additive operators

[...]

Constraints

2 Either operand may be an array with selection. If so, the other operand cannot be an array
without selection. Its singletons shall satisfy the constraints set forth in the following para-
graphs for operands which are not arrays.

3 For addition, when the operands are not arrays with selection, either both operands shall
have arithmetic type, or one operand shall be an array or a pointer to a complete object
type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

4 For subtraction, when the operands are not arrays with selection, one of the following
shall hold:

— both operands have arithmetic type;

— both operands are pointers to, or arrays of, qualified or unqualified versions of com-
patible complete object types; or

— the left operand is an array or a pointer to a complete object type and the right oper-
and has integer type.

(Decrementing is equivalent to subtracting 1.)

5 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

Semantics

6 If an operand is an array without selection, the array is first converted to a pointer to its
first element, thence operated as specified for pointers. If both operands have arithmetic
type, the usual arithmetic conversions are performed on them.

[...]

13 (Change “EXAMPLE” to “EXAMPLE 1”)

[...]

14 EXAMPLE 2 The code

79

structstructstruct stra A[10];
A[:] + 1;

has undefined behavior. For while A + 1 would be valid, an array with selection is not con-
verted to a pointer, and the selected elements of A[:] are not of a type that could be an op-
erand of the addition operator.

6.5.9 Bitwise shift operators

[...]

Constraints

2 Each of the operands shall have integer type or be an array with selection with its single-
tons of integer type.

Semantics

3 The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand, when a singleton, is
negative or is greater than or equal to the width of the promoted left operand, the behavior
is undefined.

4 When E1 and E2 are singletons, the result E1 << E2 is E1 left-shifted E2 bit positions; va-
cated bits are filled with zeros. If E1 has an unsigned type, the value of the result is E1×
2E2, wrapped around. If E1 has a signed type and nonnegative value, and E1×2E2 is repre-
sentable in the result type, then that is the resulting value; otherwise, the behavior is un-
defined.

5 When E1 and E2 are singletons, the result of E1 >> E2 is E1 right-shifted E2 bit positions.
If E1 has an unsigned type or if E1 has a signed type and a nonnegative value, the value of
the result is the integral part of the quotient of E1/2E2. If E1 has a signed type and a nega-
tive value, the resulting value is implementation-defined.

6.5.10 Relational operators

[...]

Constraints

2 Either operand may be an array with selection. If so, the other operand cannot be an array
without selection. The innermost selected elements shall be singletons and satisfy the con-
straints set forth in the following paragraphs for operands which are not arrays.

3 One of the following shall hold when the operands are not arrays with selection:

— both operands have real type; or

— both operands are pointers to, or arrays of, qualified or unqualified versions of com-
patible object types.

4 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

Semantics

5 If an operand is an array without selection, the array is first converted to a pointer to its
first element, thence operated as specified for pointers. If both operands have arithmetic
type, the usual arithmetic conversions are performed. Positive zeros compare equal to neg-
ative zeros.

6.5.11 Equality operators

80

sel-A eq s

sel-A eq B[]

[...]

Constraints

2 If no operand is an array one of the following shall hold:

[...]

3 If one operand is an array without selection the other operand cannot be an array carrying
a selection. If either or both operands are arrays not carrying a selection they are con-
verted to pointers to their first elements and it is to these pointers to which the condition
in the previous paragraph applies.

4 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

5 If one of the operands is an array carrying a selection, let T be the type of its singletons. Ei-
ther of the following shall hold:

— The other operand is not an array. If the other operand has pointer type or type
nullptr_tnullptr_tnullptr_t so is T. The type T and the other operand satisfy the constraints expressed
in the previous paragraphs for the types of the operands.

— Both operands are arrays with selection. If the singletons of one of the arrays have
pointer type or type nullptr_tnullptr_tnullptr_t so have the singletons of the other array. The type T
and the analogously defined type T’ for the other operand satisfy the constraints ex-
pressed in the previous paragraphs for the types of the operands.

Semantics

6 If an operand is an array without selection, the array is first converted to a pointer to its
first element, thence operated as specified for pointers. The == (equal to) and != (not
equal to) operators are analogous to the relational operators except for their lower prece-
dence.105) When operating on singletons, each operand yields 1 if the specified relation is
true and 0 if it is false, the result has type intintint and exactly one of the relations is true.

7 [...]

8 Otherwise, at least one operand is a pointer. [...]

9 [...]

10 [...]

11 If one operand is an array with selection with the innermost selected elements of array
type, or if it is an array with no selection which does not decay to a pointer (this is a se-
lected array from some larger array), and the other operand is a singleton, the result is an
array with selection unless the selection is empty or there is no selection, in which case it
is a singleton. The result has one element in place of each selected array (or of the whole
array if it does not carry a selection), which for the == operator has value 1 if all single-
tons of the said array compare equal to the other operand and value 0 otherwise. For the
operator != the values are the opposite. The resulting array carries a selection in all its di-
mensions.

12 If one operand is an array carrying a selection where the innermost selected elements are
arrays a, and the other operand is an array B carrying an empty selection or carrying no se-
lection and not decaying to a pointer (the latter is a selected array from some larger ar-
ray), the dimensions of the selected arrays a and the array B shall be the same. The result
is an array with one element in place of each a, which for the == operator has value 1 if all
singletons of a compare equal to the corresponding singletons of B and value 0 otherwise.
For the operator != the values are the opposite. The resulting array carries a selection in
all its dimensions.

81

13 EXAMPLE 1
intintint A[4][3], B[4][3], C[3];
intintint E[4][3], F[4], G, H[4], I[4], J;

E[:][:] = A[:][:] == B[:][:];
F[:] = A[:] == B[:];
G = A[] == B[];
H[:] = A[:] != 2;
I[:] = B[:] == C[];
J = A[] == 2;

F[0] equals (A[0][0]==B[0][0] && A[0][1]==B[0][1] && A[0][2]==B[0][2]), and
similarly for F[1], F[2] and F[3]. G is 1 if all twelve elements of A compare equal to the
corresponding elements of B. H[0] equals !(A[0][0]==2 && A[0][1]==2 && A[0][2]
==2), and similarly for H[1], H[2] and H[3]. Each I[i] equals (B[i][0]==C[0] &&
B[i][1]==C[1] && B[i][2]==C[2]). J is 1 if all twelve elements of A are 2.

16 EXAMPLE 2
intintint A[5][4][3], B[5][3], C[5][3];
intintint D[5][4], E[5][4];
D[:][:] = A[:][:] != B[:];
E = B[:][:] != C[:]; // Undefined behavior: E[i] = (B[i][:] != C[i])

Each D[i] is determined by the general recursive rule in 6.5.2 and equals A[i][:] !=
B[i]. These in turn are determined by the rule of paragraph 12, so that D[i][j] equals
!(A[i][j][0]==B[i][0] && A[i][j][1]==B[i][1] && A[i][j][2]==B[i][2]). The ex-
pression for E is, in the first place, determined also by the recursive rule, yielding E[i] =
(B[i][:] != C[i]). This one has undefined behavior because the operand C[i] is an array
which does not decay to a pointer and which does not carry a selection and B[i][:] is an
array carrying a selection of singletons, and there is no rule for that case.

17 EXAMPLE 3
intintint A[1], B[1];
intintint C[1];

C[:] = A[:] == B[:];
C[0] = A[] == B[];

The result of the first comparison is an array which is assigned to an array. The result of
the second comparison is a singleton which is assigned to a singleton.

6.5.12 Bitwise AND operator

[...]

Constraints

2 Each of the operands shall have integer type or be an array with selection with it single-
tons of integer type.

6.5.13 Bitwise exclusive OR operator

[...]

82

Constraints

2 Each of the operands shall have integer type or be an array with selection with with it sin-
gletons of integer type.

6.5.14 Bitwise inclusive OR operator

[...]

Constraints

2 Each of the operands shall have integer type or be an array with selection with it single-
tons of integer type.

6.5.17 Conditional operator

[...]

Constraints

2 The first operand shall have scalar type.

3 If the second and third operands are singletons one of the following shall hold for them:

[...]

4 If either of the second or third operands is an array without selection it is converted to a
pointer to its first elements and it is to these pointers to which the condition in the previ-
ous paragraph applies.

5 If either of the second or third operands has decimal floating type, the other operand shall
not have standard floating type, or complex type.

6 If either of the second or third operands is an array carrying a selection then so shall be
the other. Their number of dimensions, considered as multidimensional arrays, shall be the
same. If for any dimension the length in one an the other operand is given by an integer
constant expression, they shall be the same. The singletons of which one and the other ar-
ray are composed shall satisfy the constraints set above for operands which are not arrays.
In addition, if the singletons of one of the arrays have pointer type or type nullptr_tnullptr_tnullptr_t, so
shall have the singletons from the other operand.

Semantics

7 [...]

8 If the second and third operands have arithmetic type (after conversion to pointer for ar-
rays not carrying a selection), [...].

9 If one operand is a null pointer constant, the result has the type of the other operand. Oth-
erwise, if one operand has type nullptr_tnullptr_tnullptr_t, the result has the type of the other operand.
Otherwise, if both the second and third operands are pointers, the result type is a pointer
to a type qualified with all the type qualifiers of the types referenced by both operands. If
the latter types, unqualified, are compatible, the result is a pointer to the appropriately
qualified version of the composite type; otherwise, one of the operands is a pointer to voidvoidvoid
or a qualified version of voidvoidvoid and the result type is a pointer to the appropriately qualified
version of voidvoidvoid.

10 EXAMPLE [...]

12 If both operands are arrays with selection their dimensions (considered as multidimen-
sional arrays if their element type is an array type) shall be the same. The common type is
determined by applying the above rules to the types of their singletons.

83

6.5.18 Assignment operators

6.5.18.1 General

[...]

Constraints

2 An assignment operator shall have a modifiable lvalue as its left operand. If the right oper-
and is an array with selection the left operand shall be an array. If the left operand is an
array with an innermost selection of singletons, then the right operand shall be a single-
ton, or an array without selection or an array carrying an innermost selection of single-
tons.

3 If the left operand is an array with selection, the latter shall not be given by a selector of
the form [B:L:s] where s is an integer constant expression of value zero, nor shall any of
its selected elements have such a selection and so recursively.

[...]

Semantics

5 If the left operand is an array with selection it shall not carry a stepped selection where
the step is zero, nor shall its selected elements and so recursively.

6.5.18.2 Simple assignment

Constraints

1 If the left operand is not an array one of the following shall hold:

[...]

2 If the left operand is an array with an innermost selection of singletons, these together
with the right operand if not an array with selection or the selected singletons of the right
operand if it is an array with selection must satisfy the constraint above for the case the
left operand is not an array. Furthermore, if the right operand is an array with selection
and the singletons of the left operand have pointer type or type nullptr_tnullptr_tnullptr_t, so shall have
the singletons of the right operand.

3 If the right operand is an array carrying a selection where the innermost selected elements
are of array type, then so is the left operand or it is an array with no selection. The number
of dimensions with selection in the left operand shall be greater than or equal to the num-
ber of dimensions with selection in the right operand (an empty selection is considered a
selection in zero dimensions). In this case, the singletons from which the left and right ar-
rays are composed shall satisfy the constraint above for operands which are not arrays
and, in addition, if these singletons from the left operand have pointer type or type
nullptr_tnullptr_tnullptr_t, so shall have the singletons from the right operand.

Semantics

4 If the left operand is an array without selection the expression is equivalent to one in
which the left operand has had the empty range selection [] applied to it.

[...]

6 If the left operand is not an array and if the value being stored in an objectit is read from
another object that overlaps in any way its storage, then the two objects shall occupy ex-
actly the same storage and the type of the expression used to access the object read shall
be a qualified or unqualified version of a type compatible to that of the left operand; other-
wise, the behavior is undefined.

7 If the left operand is an array, for each singleton i of it in which a value is stored by the as-

s an ICE =0
could be al-
lowed with
a non-ICE
L, but it
seems bet-
ter like
this.

84

signment let C(i) be the set of its singletons that need to be read, in whole or in part, in the
expression at the right of the assignment operator in order to compute the value to store
in i. If C(i) includes another singleton of the array which also has a value stored in it by the
assignment, the behavior is undefined. If C(i) includes i, the condition in the previous para-
graph applies to it. C(i) includes all the values that are read in the abstract machine in the
chain of operations expressed by the right operand that determine de value to store in i,
even if they are not needed from the mathematical viewpoint.

8 EXAMPLE 1 Consider the following assignments

intintint A[6];
A[1:3] = A[1:3] + 0*A[3];
A[:] = A[:] - A[:];
A[:] = A[3];

In the first assignment C(i) is {i, A[3]} for each i (where A[3] means the object denoted by
A[3], not the value of the expression A[3]) and the behavior is undefined. In the second
assignment C(i) is {i} for all i. In the third assignment C(i) equals {A[3]} for all i and the
behavior is also undefined, even if the expression does not change the value of A[3].

9 EXAMPLE 2 In the following piece of code

intintint A[9];
charcharchar B[7];
A[0:3] = A[B[0]:3:-1];
A[3] = ((charcharchar*)A)[0:7] == B[];
A[3:3] = ((charcharchar*)A)[0:7] == B[];

the first assignment has defined behavior if 4 ≤ B[0] ≤ 8. The second assignment has de-
fined behavior always because the left operand is not an array and the value to store in it
is not read from an object, while the third one has undefined behavior if sizeofsizeofsizeof(intintint) ≤ 2.

[...]

13 EXAMPLE 5 Assignments where the left operand is an array.

intintint A[5][4], B[5][4], C[4];
A[:] = C[]; // Equivalent to A[0][:]=C[:], A[1][:]=C[:], etc.
A[:] = B[0][]; // A[0][:]=B[0][:], A[1][:]=B[0][:], etc.
A[:] = B[:]; // Constraint violation
A[:][:] = B[:][:]; // Write this instead
A = B[]; // Equivalent to A[:][:] = B[:][:]
A[0][:] = C; // Implicit conversions from size_tsize_tsize_t to intintint

Writing C[] and B[0][] above, instead of C or B[0], is necessary to prevent the array de-
caying to a pointer.

6.5.18.3 Compound assignment

Constraints

1 For the operators += and -= only, if the left operand is not an array with selection then: ei-
ther the left operand [...]

2 For the other operators, if the left operand is not an array with selection then: the left op-
erand [...]

85

3 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

4 If either operand is an array with selection, the innermost selected elements shall be sin-
gletons and shall satisfy the constraints set forth in the previous paragraphs.

6.7.3.6 typeof specifiers

Constraints

3 The typeof operators shall not be applied to an expression that designates a bit-field mem-
ber.

4 The typeoftypeoftypeof operator shall not be applied to an array carrying a nonempty selection.

6.7.7.3 Array declarators

4 [...] (The declaration of variable length arrays with automatic storage duration are a condi-
tional feature that implementations may support; see 6.10.10.4.)

6.10.10.4 Conditional feature macros

__STDC_NO_VLA__ __STDC_NO_VLA__ __STDC_NO_VLA__ The integer literal 1, intended to indicate that the implementation does
not support the declaration of variable length arrays with automatic storage dura-
tion. Parameters declared with variable length array types are adjusted and then de-
fine objects of automatic storage duration with pointer types. Thus, support for such
declarations is mandatory.

__STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS____STDC_ARRAY_SELECTIONS__ The integer literal 1, intended to indicate that the imple-
mentation supports array selections beyond empty selections. Otherwise the macro
shall not be defined or defined to 0.

If the implementation supports only empty selections, the following two macros may not
be defined; if defined, the first one shall be defined to 0.

__STDC_ARRSEL_NESTED____STDC_ARRSEL_NESTED____STDC_ARRSEL_NESTED__ The integer literal 0 if selections of the form [B:L] and
[B:L:s] can only be applied to expressions of pointer type and to arrays carrying no
selection or an empty selection, and the type from which the pointer type or the array
type is derived is not an array type. The integer literal 1 otherwise.

__STDC_ARRSEL_STEPPED____STDC_ARRSEL_STEPPED____STDC_ARRSEL_STEPPED__ The integer literal 0 if selections of the form [B:L:s] are not
supported; the integer literal 1 if they are.

